Biblio
Filters: Author is Meng, Q. [Clear All Filters]
Predicting buffer overflow using semi-supervised learning. 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). :1959–1963.
.
2016. As everyone knows vulnerability detection is a very difficult and time consuming work, so taking advantage of the unlabeled data sufficiently is needed and helpful. According the above reality, in this paper a method is proposed to predict buffer overflow based on semi-supervised learning. We first employ Antlr to extract AST from C/C++ source files, then according to the 22 buffer overflow attributes taxonomies, a 22-dimension vector is extracted from every function in AST, at last, the vector is leveraged to train a classifier to predict buffer overflow vulnerabilities. The experiment and evaluation indicate our method is correct and efficient.