Biblio
Filters: Author is Dedi [Clear All Filters]
The Behaviour of Magnetic Properties and Electromagnetic Absorption of MgFe2O4 prepared by Powder Metallurgy Method. 2021 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET). :136–140.
.
2021. This study focuses on the behavior of magnetic properties and electromagnetic absorption of MgFe2O4 prepared by powder metallurgy. Magnesium ferrite was synthesized using oxide precursors (MgO and Fe2 O3). The samples were calcined at 700 °C for 3 hours and sintered at 1100 °C for 24 hours with varying compaction pressure (80 kg/cm2, 90 kg/cm2, 100 kg/cm2). Magnesium ferrites were characterized using an X-Ray Diffraction (XRD) for their crystal structure analysis, a Scanning Electron Microscope equipped with an Energy Dispersive Spectroscopy (SEM-EDS) for their microstructure and elemental composition studies, a Permagraph for their magnetic properties, and a Vector Network Analysis (VNA) for their microwave absorption characteristics. XRD patterns shows primary phase of MgFe2O4 and secondary phase of Fe2 O3 present in all three samples. The SEM characterization reveal the microstructure of magnesium ferrite and the EDS spectra confirm the presence of Fe, Mg, and O. The hysteresis curves show that the values of remanence magnetic induction (Br) are 17.5 emu/g, 16.5 emu/g, and 14.5 emu/g, respective to the increasing compaction pressure. Saturation magnetization values are increasing whereas the coercivity values are found to have inconsistent change with increasing compaction pressure. According to VNA results, the values of reflection loss are -16.15 dB, -22.45 dB, and -27.55 dB, respectively.
The implementation of hybrid bonded permanent magnet on permanent magnet generator for renewable energy power plants. 2016 International Seminar on Intelligent Technology and Its Applications (ISITIA). :557–560.
.
2016. {This paper describes application of permanent magnet on permanent magnet generator (PMG) for renewable energy power plants. Permanent magnet used are bonded hybrid magnet that was a mixture of barium ferrite magnetic powders 50 wt % and NdFeB magnetic powders 50 wt % with 15 wt % of adhesive polymer as a binder. Preparation of bonded hybrid magnets by hot press method at a pressure of 2 tons and temperature of 200°C for 15 minutes. The magnetic properties obtained were remanence induction (Br) =1.54 kG, coercivity (Hc) = 1.290 kOe, product energy maximum (BHmax) = 0.28 MGOe, surface remanence induction (Br) = 1200 gauss