Biblio
When robots and human users collaborate, trust is essential for user acceptance and engagement. In this paper, we investigated two factors thought to influence user trust towards a robot: preference elicitation (a combination of user involvement and explanation) and embodiment. We set our experiment in the application domain of a restaurant recommender system, assessing trust via user decision making and perceived source credibility. Previous research in this area uses simulated environments and recommender systems that present the user with the best choice from a pool of options. This experiment builds on past work in two ways: first, we strengthened the ecological validity of our experimental paradigm by incorporating perceived risk during decision making; and second, we used a system that recommends a nonoptimal choice to the user. While no effect of embodiment is found for trust, the inclusion of preference elicitation features significantly increases user trust towards the robot recommender system. These findings have implications for marketing and health promotion in relation to Human-Robot Interaction and call for further investigation into the development and maintenance of trust between robot and user.
Energy efficient High-Performance Computing (HPC) is becoming increasingly important. Recent ventures into this space have introduced an unlikely candidate to achieve exascale scientific computing hardware with a small energy footprint. ARM processors and embedded GPU accelerators originally developed for energy efficiency in mobile devices, where battery life is critical, are being repurposed and deployed in the next generation of supercomputers. Unfortunately, the performance of executing scientific workloads on many of these devices is largely unknown, yet the bulk of computation required in high-performance supercomputers is scientific. We present an analysis of one such scientific code, in the form of Gaussian Elimination, and evaluate both execution time and energy used on a range of embedded accelerator SoCs. These include three ARM CPUs and two mobile GPUs. Understanding how these low power devices perform on scientific workloads will be critical in the selection of appropriate hardware for these supercomputers, for how can we estimate the performance of tens of thousands of these chips if the performance of one is largely unknown?