Biblio
We evaluated the support proposed by the RSO to represent graphically our EAM-ISSRM (Enterprise Architecture Management - Information System Security Risk Management) integrated model. The evaluation of the RSO visual notation has been done at two different levels: completeness with regards to the EAM-ISSRM integrated model (Section III) and cognitive effectiveness, relying on the nine principles established by D. Moody ["The 'Physics' of Notations: Toward a Scientific Basis for Constructing Visual Notations in Software Engineering," IEEE Trans. Softw. Eng., vol. 35, no. 6, pp. 756-779, Nov. 2009] (Section IV). Regarding completeness, the coverage of the EAMISSRM integrated model by the RSO is complete apart from 'Event'. As discussed in Section III, this lack is negligible and we can consider the RSO as an appropriate notation to support the EAM-ISSRM integrated model from a completeness point of view. Regarding cognitive effectiveness, many gaps have been identified with regards to the nine principle established by Moody. Although no quantitative analysis has been performed to objectify this conclusion, the RSO can decently not be considered as an appropriate notation from a cognitive effectiveness point of view and there is room to propose a notation better on this aspect. This paper is focused on assessing the RSO without suggesting improvements based on the conclusions drawn. As a consequence, our objective for future work is to propose a more cognitive effective visual notation for the EAM-ISSRM integrated model. The approach currently considered is to operationalize Moody's principles into concrete metrics and requirements, taking into account the needs and profile of the target group of our notation (information security risk managers) through personas development and user experience map. With such an approach, we will be able to make decisions on the necessary trade-offs about our visual syntax, taking care of a specific context. We also aim at valida- ing our proposal(s) with the help of tools and approaches extracted from cognitive psychology research applied to HCI domain (e.g., eye tracking, heuristic evaluation, user experience evaluation…).