Visible to the public Biblio

Filters: Author is Bhattacharjee, S. Das  [Clear All Filters]
2018-01-10
Bhattacharjee, S. Das, Talukder, A., Al-Shaer, E., Doshi, P..  2017.  Prioritized active learning for malicious URL detection using weighted text-based features. 2017 IEEE International Conference on Intelligence and Security Informatics (ISI). :107–112.

Data analytics is being increasingly used in cyber-security problems, and found to be useful in cases where data volumes and heterogeneity make it cumbersome for manual assessment by security experts. In practical cyber-security scenarios involving data-driven analytics, obtaining data with annotations (i.e. ground-truth labels) is a challenging and known limiting factor for many supervised security analytics task. Significant portions of the large datasets typically remain unlabelled, as the task of annotation is extensively manual and requires a huge amount of expert intervention. In this paper, we propose an effective active learning approach that can efficiently address this limitation in a practical cyber-security problem of Phishing categorization, whereby we use a human-machine collaborative approach to design a semi-supervised solution. An initial classifier is learnt on a small amount of the annotated data which in an iterative manner, is then gradually updated by shortlisting only relevant samples from the large pool of unlabelled data that are most likely to influence the classifier performance fast. Prioritized Active Learning shows a significant promise to achieve faster convergence in terms of the classification performance in a batch learning framework, and thus requiring even lesser effort for human annotation. An useful feature weight update technique combined with active learning shows promising classification performance for categorizing Phishing/malicious URLs without requiring a large amount of annotated training samples to be available during training. In experiments with several collections of PhishMonger's Targeted Brand dataset, the proposed method shows significant improvement over the baseline by as much as 12%.

2017-12-12
Bhattacharjee, S. Das, Yuan, J., Jiaqi, Z., Tan, Y. P..  2017.  Context-aware graph-based analysis for detecting anomalous activities. 2017 IEEE International Conference on Multimedia and Expo (ICME). :1021–1026.

This paper proposes a context-aware, graph-based approach for identifying anomalous user activities via user profile analysis, which obtains a group of users maximally similar among themselves as well as to the query during test time. The main challenges for the anomaly detection task are: (1) rare occurrences of anomalies making it difficult for exhaustive identification with reasonable false-alarm rate, and (2) continuously evolving new context-dependent anomaly types making it difficult to synthesize the activities apriori. Our proposed query-adaptive graph-based optimization approach, solvable using maximum flow algorithm, is designed to fully utilize both mutual similarities among the user models and their respective similarities with the query to shortlist the user profiles for a more reliable aggregated detection. Each user activity is represented using inputs from several multi-modal resources, which helps to localize anomalies from time-dependent data efficiently. Experiments on public datasets of insider threats and gesture recognition show impressive results.