Visible to the public Biblio

Filters: Author is Bhargava, B.  [Clear All Filters]
2021-01-22
Mani, G., Pasumarti, V., Bhargava, B., Vora, F. T., MacDonald, J., King, J., Kobes, J..  2020.  DeCrypto Pro: Deep Learning Based Cryptomining Malware Detection Using Performance Counters. 2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS). :109—118.
Autonomy in cybersystems depends on their ability to be self-aware by understanding the intent of services and applications that are running on those systems. In case of mission-critical cybersystems that are deployed in dynamic and unpredictable environments, the newly integrated unknown applications or services can either be benign and essential for the mission or they can be cyberattacks. In some cases, these cyberattacks are evasive Advanced Persistent Threats (APTs) where the attackers remain undetected for reconnaissance in order to ascertain system features for an attack e.g. Trojan Laziok. In other cases, the attackers can use the system only for computing e.g. cryptomining malware. APTs such as cryptomining malware neither disrupt normal system functionalities nor trigger any warning signs because they simply perform bitwise and cryptographic operations as any other benign compression or encoding application. Thus, it is difficult for defense mechanisms such as antivirus applications to detect these attacks. In this paper, we propose an Operating Context profiling system based on deep neural networks-Long Short-Term Memory (LSTM) networks-using Windows Performance Counters data for detecting these evasive cryptomining applications. In addition, we propose Deep Cryptomining Profiler (DeCrypto Pro), a detection system with a novel model selection framework containing a utility function that can select a classification model for behavior profiling from both the light-weight machine learning models (Random Forest and k-Nearest Neighbors) and a deep learning model (LSTM), depending on available computing resources. Given data from performance counters, we show that individual models perform with high accuracy and can be trained with limited training data. We also show that the DeCrypto Profiler framework reduces the use of computational resources and accurately detects cryptomining applications by selecting an appropriate model, given the constraints such as data sample size and system configuration.
2018-02-02
Villarreal-Vasquez, M., Bhargava, B., Angin, P..  2017.  Adaptable Safety and Security in V2X Systems. 2017 IEEE International Congress on Internet of Things (ICIOT). :17–24.

With the advances in the areas of mobile computing and wireless communications, V2X systems have become a promising technology enabling deployment of applications providing road safety, traffic efficiency and infotainment. Due to their increasing popularity, V2X networks have become a major target for attackers, making them vulnerable to security threats and network conditions, and thus affecting the safety of passengers, vehicles and roads. Existing research in V2X does not effectively address the safety, security and performance limitation threats to connected vehicles, as a result of considering these aspects separately instead of jointly. In this work, we focus on the analysis of the tradeoffs between safety, security and performance of V2X systems and propose a dynamic adaptability approach considering all three aspects jointly based on application needs and context to achieve maximum safety on the roads using an Internet of vehicles. Experiments with a simple V2V highway scenario demonstrate that an adaptive safety/security approach is essential and V2X systems have great potential for providing low reaction times.

2017-12-28
Kumar, S. A. P., Bhargava, B., Macêdo, R., Mani, G..  2017.  Securing IoT-Based Cyber-Physical Human Systems against Collaborative Attacks. 2017 IEEE International Congress on Internet of Things (ICIOT). :9–16.

Security issues in the IoT based CPS are exacerbated with human participation in CPHS due to the vulnerabilities in both the technologies and the human involvement. A holistic framework to mitigate security threats in the IoT-based CPHS environment is presented to mitigate these issues. We have developed threat model involving human elements in the CPHS environment. Research questions, directions, and ideas with respect to securing IoT based CPHS against collaborative attacks are presented.

2017-12-12
Fernando, R., Ranchal, R., Bhargava, B., Angin, P..  2017.  A Monitoring Approach for Policy Enforcement in Cloud Services. 2017 IEEE 10th International Conference on Cloud Computing (CLOUD). :600–607.

When clients interact with a cloud-based service, they expect certain levels of quality of service guarantees. These are expressed as security and privacy policies, interaction authorization policies, and service performance policies among others. The main security challenge in a cloud-based service environment, typically modeled using service-oriented architecture (SOA), is that it is difficult to trust all services in a service composition. In addition, the details of the services involved in an end-to-end service invocation chain are usually not exposed to the clients. The complexity of the SOA services and multi-tenancy in the cloud environment leads to a large attack surface. In this paper we propose a novel approach for end-to-end security and privacy in cloud-based service orchestrations, which uses a service activity monitor to audit activities of services in a domain. The service monitor intercepts interactions between a client and services, as well as among services, and provides a pluggable interface for different modules to analyze service interactions and make dynamic decisions based on security policies defined over the service domain. Experiments with a real-world service composition scenario demonstrate that the overhead of monitoring is acceptable for real-time operation of Web services.