Visible to the public Biblio

Filters: Author is Sandhu, R.  [Clear All Filters]
2021-04-08
Ameer, S., Benson, J., Sandhu, R..  2020.  The EGRBAC Model for Smart Home IoT. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :457–462.
The Internet of Things (IoT) is enabling smart houses, where multiple users with complex social relationships interact with smart devices. This requires sophisticated access control specification and enforcement models, that are currently lacking. In this paper, we introduce the extended generalized role based access control (EGRBAC) model for smart home IoT. We provide a formal definition for EGRBAC and illustrate its features with a use case. A proof-of-concept demonstration utilizing AWS-IoT Greengrass is discussed in the appendix. EGRBAC is a first step in developing a comprehensive family of access control models for smart home IoT.
2017-12-20
Alshehri, A., Sandhu, R..  2017.  Access Control Models for Virtual Object Communication in Cloud-Enabled IoT. 2017 IEEE International Conference on Information Reuse and Integration (IRI). :16–25.
The Internet of Things (IoT) is the latest evolution of the Internet, encompassing an enormous number of connected physical "things." The access-control oriented (ACO) architecture was recently proposed for cloud-enabled IoT, with virtual objects (VOs) and cloud services in the middle layers. A central aspect of ACO is to control communication among VOs. This paper develops operational and administrative access control models for this purpose, assuming topic-based publishsubscribe interaction among VOs. Operational models are developed using (i) access control lists for topics and capabilities for virtual objects and (ii) attribute-based access control, and it is argued that role-based access control is not suitable for this purpose. Administrative models for these two operational models are developed using (i) access control lists, (ii) role-based access control, and (iii) attribute-based access control. A use case illustrates the details of these access control models for VO communication, and their differences. An assessment of these models with respect to security and privacy preserving objectives of IoT is also provided.