Visible to the public Biblio

Filters: Author is Graffi, K.  [Clear All Filters]
2018-03-19
Al-Aaridhi, R., Yueksektepe, A., Graffi, K..  2017.  Access Control for Secure Distributed Data Structures in Distributed Hash Tables. 2017 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN). :1–3.
Peer-To-Peer (P2P) networks open up great possibilities for intercommunication, collaborative and social projects like file sharing, communication protocols or social networks while offering advantages over the conventional Client-Server model of computing pattern. Such networks counter the problems of centralized servers such as that P2P networks can scale to millions without additional costs. In previous work, we presented Distributed Data Structure (DDS) which offers a middle-ware scheme for distributed applications. This scheme builds on top of DHT (Distributed Hash Table) based P2P overlays, and offers distributed data storage services as a middle-ware it still needs to address security issues. The main objective of this paper is to investigate possible ways to handle the security problem for DDS, and to develop a possibly reusable security architecture for access control for secure distributed data structures in P2P networks without depending on trusted third parties.
2018-02-21
Ippisch, A., Graffi, K..  2017.  Infrastructure Mode Based Opportunistic Networks on Android Devices. 2017 IEEE 31st International Conference on Advanced Information Networking and Applications (AINA). :454–461.

Opportunistic Networks are delay-tolerant mobile networks with intermittent node contacts in which data is transferred with the store-carry-forward principle. Owners of smartphones and smart objects form such networks due to their social behaviour. Opportunistic Networking can be used in remote areas with no access to the Internet, to establish communication after disasters, in emergency situations or to bypass censorship, but also in parallel to familiar networking. In this work, we create a mobile network application that connects Android devices over Wi-Fi, offers identification and encryption, and gathers information for routing in the network. The network application is constructed in such a way that third party applications can use the network application as network layer to send and receive data packets. We create secure and reliable connections while maintaining a high transmission speed, and with the gathered information about the network we offer knowledge for state of the art routing protocols. We conduct tests on connectivity, transmission range and speed, battery life and encryption speed and show a proof of concept for routing in the network.

2015-04-30
Janiuk, J., Macker, A., Graffi, K..  2014.  Secure distributed data structures for peer-to-peer-based social networks. Collaboration Technologies and Systems (CTS), 2014 International Conference on. :396-405.

Online social networks are attracting billions of nowadays, both on a global scale as well as in social enterprise networks. Using distributed hash tables and peer-to-peer technology allows online social networks to be operated securely and efficiently only by using the resources of the user devices, thus alleviating censorship or data misuse by a single network operator. In this paper, we address the challenges that arise in implementing reliably and conveniently to use distributed data structures, such as lists or sets, in such a distributed hash-table-based online social network. We present a secure, distributed list data structure that manages the list entries in several buckets in the distributed hash table. The list entries are authenticated, integrity is maintained and access control for single users and also groups is integrated. The approach for secure distributed lists is also applied for prefix trees and sets, and implemented and evaluated in a peer-to-peer framework for social networks. Evaluation shows that the distributed data structure is convenient and efficient to use and that the requirements on security hold.