Visible to the public Biblio

Filters: Author is Huang, Y.  [Clear All Filters]
2021-01-25
Hu, W., Zhang, L., Liu, X., Huang, Y., Zhang, M., Xing, L..  2020.  Research on Automatic Generation and Analysis Technology of Network Attack Graph. 2020 IEEE 6th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :133–139.
In view of the problem that the overall security of the network is difficult to evaluate quantitatively, we propose the edge authority attack graph model, which aims to make up for the traditional dependence attack graph to describe the relationship between vulnerability behaviors. This paper proposed a network security metrics based on probability, and proposes a network vulnerability algorithm based on vulnerability exploit probability and attack target asset value. Finally, a network security reinforcement algorithm with network vulnerability index as the optimization target is proposed based on this metric algorithm.
2021-01-18
Huang, Y., Wang, S., Wang, Y., Li, H..  2020.  A New Four-Dimensional Chaotic System and Its Application in Speech Encryption. 2020 Information Communication Technologies Conference (ICTC). :171–175.
Traditional encryption algorithms are not suitable for modern mass speech situations, while some low-dimensional chaotic encryption algorithms are simple and easy to implement, but their key space often small, leading to poor security, so there is still a lot of room for improvement. Aiming at these problems, this paper proposes a new type of four-dimensional chaotic system and applies it to speech encryption. Simulation results show that the encryption scheme in this paper has higher key space and security, which can achieve the speech encryption goal.
2021-01-11
Zhao, F., Skums, P., Zelikovsky, A., Sevigny, E. L., Swahn, M. H., Strasser, S. M., Huang, Y., Wu, Y..  2020.  Computational Approaches to Detect Illicit Drug Ads and Find Vendor Communities Within Social Media Platforms. IEEE/ACM Transactions on Computational Biology and Bioinformatics. :1–1.
The opioid abuse epidemic represents a major public health threat to global populations. The role social media may play in facilitating illicit drug trade is largely unknown due to limited research. However, it is known that social media use among adults in the US is widespread, there is vast capability for online promotion of illegal drugs with delayed or limited deterrence of such messaging, and further, general commercial sale applications provide safeguards for transactions; however, they do not discriminate between legal and illegal sale transactions. These characteristics of the social media environment present challenges to surveillance which is needed for advancing knowledge of online drug markets and the role they play in the drug abuse and overdose deaths. In this paper, we present a computational framework developed to automatically detect illicit drug ads and communities of vendors.The SVM- and CNNbased methods for detecting illicit drug ads, and a matrix factorization based method for discovering overlapping communities have been extensively validated on the large dataset collected from Google+, Flickr and Tumblr. Pilot test results demonstrate that our computational methods can effectively identify illicit drug ads and detect vendor-community with accuracy. These methods hold promise to advance scientific knowledge surrounding the role social media may play in perpetuating the drug abuse epidemic.
2020-12-14
Huang, Y., Wang, W., Wang, Y., Jiang, T., Zhang, Q..  2020.  Lightweight Sybil-Resilient Multi-Robot Networks by Multipath Manipulation. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :2185–2193.

Wireless networking opens up many opportunities to facilitate miniaturized robots in collaborative tasks, while the openness of wireless medium exposes robots to the threats of Sybil attackers, who can break the fundamental trust assumption in robotic collaboration by forging a large number of fictitious robots. Recent advances advocate the adoption of bulky multi-antenna systems to passively obtain fine-grained physical layer signatures, rendering them unaffordable to miniaturized robots. To overcome this conundrum, this paper presents ScatterID, a lightweight system that attaches featherlight and batteryless backscatter tags to single-antenna robots to defend against Sybil attacks. Instead of passively "observing" signatures, ScatterID actively "manipulates" multipath propagation by using backscatter tags to intentionally create rich multipath features obtainable to a single-antenna robot. These features are used to construct a distinct profile to detect the real signal source, even when the attacker is mobile and power-scaling. We implement ScatterID on the iRobot Create platform and evaluate it in typical indoor and outdoor environments. The experimental results show that our system achieves a high AUROC of 0.988 and an overall accuracy of 96.4% for identity verification.

2020-12-11
Huang, Y., Jing, M., Tang, H., Fan, Y., Xue, X., Zeng, X..  2019.  Real-Time Arbitrary Style Transfer with Convolution Neural Network. 2019 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA). :65—66.

Style transfer is a research hotspot in computer vision. Up to now, it is still a challenge although many researches have been conducted on it for high quality style transfer. In this work, we propose an algorithm named ASTCNN which is a real-time Arbitrary Style Transfer Convolution Neural Network. The ASTCNN consists of two independent encoders and a decoder. The encoders respectively extract style and content features from style and content and the decoder generates the style transferred image images. Experimental results show that ASTCNN achieves higher quality output image than the state-of-the-art style transfer algorithms and the floating point computation of ASTCNN is 23.3% less than theirs.

Huang, Y., Wang, Y..  2019.  Multi-format speech perception hashing based on time-frequency parameter fusion of energy zero ratio and frequency band variance. 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE). :243—251.

In order to solve the problems of the existing speech content authentication algorithm, such as single format, ununiversal algorithm, low security, low accuracy of tamper detection and location in small-scale, a multi-format speech perception hashing based on time-frequency parameter fusion of energy zero ratio and frequency band bariance is proposed. Firstly, the algorithm preprocesses the processed speech signal and calculates the short-time logarithmic energy, zero-crossing rate and frequency band variance of each speech fragment. Then calculate the energy to zero ratio of each frame, perform time- frequency parameter fusion on time-frequency features by mean filtering, and the time-frequency parameters are constructed by difference hashing method. Finally, the hash sequence is scrambled with equal length by logistic chaotic map, so as to improve the security of the hash sequence in the transmission process. Experiments show that the proposed algorithm is robustness, discrimination and key dependent.

2019-02-21
Bi, Q., Huang, Y..  2018.  A Self-organized Shape Formation Method for Swarm Controlling. 2018 37th Chinese Control Conference (CCC). :7205–7209.
This paper presents a new approach for the shape formation based on the artificial method. It refers to the basic concept in the swarm intelligence: complex behaviors of the swarm can be formed with simple rules designed in the agents. In the framework, the distance image is used to generate not only an attraction field to keep all the agents in the given shape, but also repulsive force field among the agents to make them distribute uniformly. Compared to the traditional methods based on centralized control, the algorithm has properties of distributed and simple computation, convergence and robustness, which is very suitable for the swarm robots in the real world considering the limitation of communication, collision avoidance and calculation problems. We also show that some initial sensitive method can be improved in the similar way. The simulation results prove the proposed approach is suitable for convex. non-convex and line shapes.
2019-01-21
Gao, J., Wang, J., Zhang, L., Yu, Q., Huang, Y., Shen, Y..  2019.  Magnetic Signature Analysis for Smart Security System Based on TMR Magnetic Sensor Array. IEEE Sensors Journal. :1–1.

This paper presents a novel low power security system based on magnetic anomaly detection by using Tunneling Magnetoresistance (TMR) magnetic sensors. In this work, a smart light has been developed, which consists of TMR sensors array, detection circuits, a micro-controller and a battery. Taking the advantage of low power consumption of TMR magnetic sensors, the smart light powered by Li-ion battery can work for several months. Power Spectrum Density of the obtained signal was analyzed to reject background noise and improve the signal to noise ratio effectively by 1.3 dB, which represented a 30% detection range improvement. Also, by sending the signals to PC, the magnetic fingerprints of the objects have been configured clearly. In addition, the quick scan measurement has been also performed to demonstrate that the system can discriminate the multiple objects with 30 cm separation. Since the whole system was compact and portable, it can be used for security check at office, meeting room or other private places without attracting any attention. Moreover, it is promising to integrate multiply such systems together to achieve a wireless security network in large-scale monitoring.

2018-09-28
Tsou, Y., Chen, H., Chen, J., Huang, Y., Wang, P..  2017.  Differential privacy-based data de-identification protection and risk evaluation system. 2017 International Conference on Information and Communication Technology Convergence (ICTC). :416–421.

As more and more technologies to store and analyze massive amount of data become available, it is extremely important to make privacy-sensitive data de-identified so that further analysis can be conducted by different parties. For example, data needs to go through data de-identification process before being transferred to institutes for further value added analysis. As such, privacy protection issues associated with the release of data and data mining have become a popular field of study in the domain of big data. As a strict and verifiable definition of privacy, differential privacy has attracted noteworthy attention and widespread research in recent years. Nevertheless, differential privacy is not practical for most applications due to its performance of synthetic dataset generation for data query. Moreover, the definition of data protection by randomized noise in native differential privacy is abstract to users. Therefore, we design a pragmatic DP-based data de-identification protection and risk of data disclosure estimation system, in which a DP-based noise addition mechanism is applied to generate synthetic datasets. Furthermore, the risk of data disclosure to these synthetic datasets can be evaluated before releasing to buyers/consumers.

2018-06-07
Yang, Y., Chen, J., Huang, Y., Wang, X..  2017.  Security-reliability tradeoff for cooperative multi-relay and jammer selection in Nakagami-m fading channels. 2017 IEEE 17th International Conference on Communication Technology (ICCT). :181–186.
In this paper, we analyze the security-reliability tradeoff (SRT) performance of the multi-relay cooperative networks over Nakagami-m fading channels. By considering the reliability of the first phase from the source to relay, a cooperative jamming (CJ) assisted secure transmission scheme is investigated to improve the security performance of the considered system. Specifically, we derive the approximate closed-form expression of the outage probability (OP) and exact closed-form expression of the intercepted probability (IP) for the CJ scheme to evaluate the SRT performance of the system. Finally, the simulation results verify the validity of our theoretical derivations and the advantage of the CJ scheme compared to the traditional scheme with no cooperative jammer.
2017-12-20
Wang, Y., Huang, Y., Zheng, W., Zhou, Z., Liu, D., Lu, M..  2017.  Combining convolutional neural network and self-adaptive algorithm to defeat synthetic multi-digit text-based CAPTCHA. 2017 IEEE International Conference on Industrial Technology (ICIT). :980–985.
We always use CAPTCHA(Completely Automated Public Turing test to Tell Computers and Humans Apart) to prevent automated bot for data entry. Although there are various kinds of CAPTCHAs, text-based scheme is still applied most widely, because it is one of the most convenient and user-friendly way for daily user [1]. The fact is that segmentations of different types of CAPTCHAs are not always the same, which means one of CAPTCHA's bottleneck is the segmentation. Once we could accurately split the character, the problem could be solved much easier. Unfortunately, the best way to divide them is still case by case, which is to say there is no universal way to achieve it. In this paper, we present a novel algorithm to achieve state-of-the-art performance, what was more, we also constructed a new convolutional neural network as an add-on recognition part to stabilize our state-of-the-art performance of the whole CAPTCHA system. The CAPTCHA datasets we are using is from the State Administration for Industry& Commerce of the People's Republic of China. In this datasets, there are totally 33 entrances of CAPTCHAs. In this experiments, we assume that each of the entrance is known. Results are provided showing how our algorithms work well towards these CAPTCHAs.