Visible to the public Biblio

Filters: Author is Yan, Q.  [Clear All Filters]
2021-03-29
Peng, Y., Fu, G., Luo, Y., Hu, J., Li, B., Yan, Q..  2020.  Detecting Adversarial Examples for Network Intrusion Detection System with GAN. 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS). :6–10.
With the increasing scale of network, attacks against network emerge one after another, and security problems become increasingly prominent. Network intrusion detection system is a widely used and effective security means at present. In addition, with the development of machine learning technology, various intelligent intrusion detection algorithms also start to sprout. By flexibly combining these intelligent methods with intrusion detection technology, the comprehensive performance of intrusion detection can be improved, but the vulnerability of machine learning model in the adversarial environment can not be ignored. In this paper, we study the defense problem of network intrusion detection system against adversarial samples. More specifically, we design a defense algorithm for NIDS against adversarial samples by using bidirectional generative adversarial network. The generator learns the data distribution of normal samples during training, which is an implicit model reflecting the normal data distribution. After training, the adversarial sample detection module calculates the reconstruction error and the discriminator matching error of sample. Then, the adversarial samples are removed, which improves the robustness and accuracy of NIDS in the adversarial environment.
2018-02-14
Raju, S., Boddepalli, S., Gampa, S., Yan, Q., Deogun, J. S..  2017.  Identity management using blockchain for cognitive cellular networks. 2017 IEEE International Conference on Communications (ICC). :1–6.
Cloud-centric cognitive cellular networks utilize dynamic spectrum access and opportunistic network access technologies as a means to mitigate spectrum crunch and network demand. However, furnishing a carrier with personally identifiable information for user setup increases the risk of profiling in cognitive cellular networks, wherein users seek secondary access at various times with multiple carriers. Moreover, network access provisioning - assertion, authentication, authorization, and accounting - implemented in conventional cellular networks is inadequate in the cognitive space, as it is neither spontaneous nor scalable. In this paper, we propose a privacy-enhancing user identity management system using blockchain technology which places due importance on both anonymity and attribution, and supports end-to-end management from user assertion to usage billing. The setup enables network access using pseudonymous identities, hindering the reconstruction of a subscriber's identity. Our test results indicate that this approach diminishes access provisioning duration by up to 4x, decreases network signaling traffic by almost 40%, and enables near real-time user billing that may lead to approximately 3x reduction in payments settlement time.
2018-01-10
Wang, S., Yan, Q., Chen, Z., Yang, B., Zhao, C., Conti, M..  2017.  TextDroid: Semantics-based detection of mobile malware using network flows. 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :18–23.

The wide-spreading mobile malware has become a dreadful issue in the increasingly popular mobile networks. Most of the mobile malware relies on network interface to coordinate operations, steal users' private information, and launch attack activities. In this paper, we propose TextDroid, an effective and automated malware detection method combining natural language processing and machine learning. TextDroid can extract distinguishable features (n-gram sequences) to characterize malware samples. A malware detection model is then developed to detect mobile malware using a Support Vector Machine (SVM) classifier. The trained SVM model presents a superior performance on two different data sets, with the malware detection rate reaching 96.36% in the test set and 76.99% in an app set captured in the wild, respectively. In addition, we also design a flow header visualization method to visualize the highlighted texts generated during the apps' network interactions, which assists security researchers in understanding the apps' complex network activities.