Biblio
In this paper we propose a methodology and a prototype tool to evaluate web application security mechanisms. The methodology is based on the idea that injecting realistic vulnerabilities in a web application and attacking them automatically can be used to support the assessment of existing security mechanisms and tools in custom setup scenarios. To provide true to life results, the proposed vulnerability and attack injection methodology relies on the study of a large number of vulnerabilities in real web applications. In addition to the generic methodology, the paper describes the implementation of the Vulnerability & Attack Injector Tool (VAIT) that allows the automation of the entire process. We used this tool to run a set of experiments that demonstrate the feasibility and the effectiveness of the proposed methodology. The experiments include the evaluation of coverage and false positives of an intrusion detection system for SQL Injection attacks and the assessment of the effectiveness of two top commercial web application vulnerability scanners. Results show that the injection of vulnerabilities and attacks is indeed an effective way to evaluate security mechanisms and to point out not only their weaknesses but also ways for their improvement.
Most web applications have critical bugs (faults) affecting their security, which makes them vulnerable to attacks by hackers and organized crime. To prevent these security problems from occurring it is of utmost importance to understand the typical software faults. This paper contributes to this body of knowledge by presenting a field study on two of the most widely spread and critical web application vulnerabilities: SQL Injection and XSS. It analyzes the source code of security patches of widely used web applications written in weak and strong typed languages. Results show that only a small subset of software fault types, affecting a restricted collection of statements, is related to security. To understand how these vulnerabilities are really exploited by hackers, this paper also presents an analysis of the source code of the scripts used to attack them. The outcomes of this study can be used to train software developers and code inspectors in the detection of such faults and are also the foundation for the research of realistic vulnerability and attack injectors that can be used to assess security mechanisms, such as intrusion detection systems, vulnerability scanners, and static code analyzers.