Biblio
For sketch-based image retrieval (SBIR), we propose a generative adversarial network trained on a large number of sketches and their corresponding real images. To imitate human search process, we attempt to match candidate images with theimaginary image in user single s mind instead of the sketch query, i.e., not only the shape information of sketches but their possible content information are considered in SBIR. Specifically, a conditional generative adversarial network (cGAN) is employed to enrich the content information of sketches and recover the imaginary images, and two VGG-based encoders, which work on real and imaginary images respectively, are used to constrain their perceptual consistency from the view of feature representations. During SBIR, we first generate an imaginary image from a given sketch via cGAN, and then take the output of the learned encoder for imaginary images as the feature of the query sketch. Finally, we build an interactive SBIR system that shows encouraging performance.
Hashing methods play an important role in large scale image retrieval. Traditional hashing methods use hand-crafted features to learn hash functions, which can not capture the high level semantic information. Deep hashing algorithms use deep neural networks to learn feature representation and hash functions simultaneously. Most of these algorithms exploit supervised information to train the deep network. However, supervised information is expensive to obtain. In this paper, we propose a pseudo label based unsupervised deep discriminative hashing algorithm. First, we cluster images via K-means and the cluster labels are treated as pseudo labels. Then we train a deep hashing network with pseudo labels by minimizing the classification loss and quantization loss. Experiments on two datasets demonstrate that our unsupervised deep discriminative hashing method outperforms the state-of-art unsupervised hashing methods.