Visible to the public Biblio

Filters: Author is Kemp, C.  [Clear All Filters]
2020-11-09
Kemp, C., Calvert, C., Khoshgoftaar, T..  2018.  Utilizing Netflow Data to Detect Slow Read Attacks. 2018 IEEE International Conference on Information Reuse and Integration (IRI). :108–116.
Attackers can leverage several techniques to compromise computer networks, ranging from sophisticated malware to DDoS (Distributed Denial of Service) attacks that target the application layer. Application layer DDoS attacks, such as Slow Read, are implemented with just enough traffic to tie up CPU or memory resources causing web and application servers to go offline. Such attacks can mimic legitimate network requests making them difficult to detect. They also utilize less volume than traditional DDoS attacks. These low volume attack methods can often go undetected by network security solutions until it is too late. In this paper, we explore the use of machine learners for detecting Slow Read DDoS attacks on web servers at the application layer. Our approach uses a generated dataset based upon Netflow data collected at the application layer on a live network environment. Our Netflow data uses the IP Flow Information Export (IPFIX) standard providing significant flexibility and features. These Netflow features can process and handle a growing amount of traffic and have worked well in our previous DDoS work detecting evasion techniques. Our generated dataset consists of real-world network data collected from a production network. We use eight different classifiers to build Slow Read attack detection models. Our wide selection of learners provides us with a more comprehensive analysis of Slow Read detection models. Experimental results show that the machine learners were quite successful in identifying the Slow Read attacks with a high detection and low false alarm rate. The experiment demonstrates that our chosen Netflow features are discriminative enough to detect such attacks accurately.
2018-01-16
Najafabadi, M. M., Khoshgoftaar, T. M., Calvert, C., Kemp, C..  2017.  User Behavior Anomaly Detection for Application Layer DDoS Attacks. 2017 IEEE International Conference on Information Reuse and Integration (IRI). :154–161.

Distributed Denial of Service (DDoS) attacks are a popular and inexpensive form of cyber attacks. Application layer DDoS attacks utilize legitimate application layer requests to overwhelm a web server. These attacks are a major threat to Internet applications and web services. The main goal of these attacks is to make the services unavailable to legitimate users by overwhelming the resources on a web server. They look valid in connection and protocol characteristics, which makes them difficult to detect. In this paper, we propose a detection method for the application layer DDoS attacks, which is based on user behavior anomaly detection. We extract instances of user behaviors requesting resources from HTTP web server logs. We apply the Principle Component Analysis (PCA) subspace anomaly detection method for the detection of anomalous behavior instances. Web server logs from a web server hosting a student resource portal were collected as experimental data. We also generated nine different HTTP DDoS attacks through penetration testing. Our performance results on the collected data show that using PCAsubspace anomaly detection on user behavior data can detect application layer DDoS attacks, even if they are trying to mimic a normal user's behavior at some level.