Visible to the public Biblio

Filters: Author is Elovici, Y.  [Clear All Filters]
2021-01-25
Stan, O., Bitton, R., Ezrets, M., Dadon, M., Inokuchi, M., Yoshinobu, O., Tomohiko, Y., Elovici, Y., Shabtai, A..  2020.  Extending Attack Graphs to Represent Cyber-Attacks in Communication Protocols and Modern IT Networks. IEEE Transactions on Dependable and Secure Computing. :1–1.
An attack graph is a method used to enumerate the possible paths that an attacker can take in the organizational network. MulVAL is a known open-source framework used to automatically generate attack graphs. MulVAL's default modeling has two main shortcomings. First, it lacks the ability to represent network protocol vulnerabilities, and thus it cannot be used to model common network attacks, such as ARP poisoning. Second, it does not support advanced types of communication, such as wireless and bus communication, and thus it cannot be used to model cyber-attacks on networks that include IoT devices or industrial components. In this paper, we present an extended network security model for MulVAL that: (1) considers the physical network topology, (2) supports short-range communication protocols, (3) models vulnerabilities in the design of network protocols, and (4) models specific industrial communication architectures. Using the proposed extensions, we were able to model multiple attack techniques including: spoofing, man-in-the-middle, and denial of service attacks, as well as attacks on advanced types of communication. We demonstrate the proposed model in a testbed which implements a simplified network architecture comprised of both IT and industrial components
2019-01-31
Guri, M., Zadov, B., Daidakulov, A., Elovici, Y..  2018.  xLED: Covert Data Exfiltration from Air-Gapped Networks via Switch and Router LEDs. 2018 16th Annual Conference on Privacy, Security and Trust (PST). :1–12.

An air-gapped network is a type of IT network that is separated from the Internet - physically - due to the sensitive information it stores. Even if such a network is compromised with a malware, the hermetic isolation from the Internet prevents an attacker from leaking out any data - thanks to the lack of connectivity. In this paper we show how attackers can covertly leak sensitive data from air-gapped networks via the row of status LEDs on networking equipment such as LAN switches and routers. Although it is known that some network equipment emanates optical signals correlated with the information being processed by the device (‘side-channel'), malware controlling the status LEDs to carry any type of data (‘covert-channel') has never studied before. Sensitive data can be covertly encoded over the blinking of the LEDs and received by remote cameras and optical sensors. A malicious code is executed in a compromised LAN switch or router allowing the attacker direct, low-level control of the LEDs. We provide the technical background on the internal architecture of switches and routers at both the hardware and software level which enables these attacks. We present different modulation and encoding schemas, along with a transmission protocol. We implement prototypes of the malware and discuss its design and implementation. We tested various receivers including remote cameras, security cameras, smartphone cameras, and optical sensors, and discuss detection and prevention countermeasures. Our experiments show that sensitive data can be covertly leaked via the status LEDs of switches and routers at bit rates of 1 bit/sec to more than 2000 bit/sec per LED.

2019-01-21
Belikovetsky, S., Solewicz, Y., Yampolskiy, M., Toh, J., Elovici, Y..  2018.  Digital Audio Signature for 3D Printing Integrity. IEEE Transactions on Information Forensics and Security. :1–1.

Additive manufacturing (AM, or 3D printing) is a novel manufacturing technology that has been adopted in industrial and consumer settings. However, the reliance of this technology on computerization has raised various security concerns. In this paper, we address issues associated with sabotage via tampering during the 3D printing process by presenting an approach that can verify the integrity of a 3D printed object. Our approach operates on acoustic side-channel emanations generated by the 3D printer’s stepper motors, which results in a non-intrusive and real-time validation process that is difficult to compromise. The proposed approach constitutes two algorithms. The first algorithm is used to generate a master audio fingerprint for the verifiable unaltered printing process. The second algorithm is applied when the same 3D object is printed again, and this algorithm validates the monitored 3D printing process by assessing the similarity of its audio signature with the master audio fingerprint. To evaluate the quality of the proposed thresholds, we identify the detectability thresholds for the following minimal tampering primitives: insertion, deletion, replacement, and modification of a single tool path command. By detecting the deviation at the time of occurrence, we can stop the printing process for compromised objects, thus saving time and preventing material waste. We discuss various factors that impact the method, such as background noise, audio device changes and different audio recorder positions.

2018-11-14
Teoh, T. T., Zhang, Y., Nguwi, Y. Y., Elovici, Y., Ng, W. L..  2017.  Analyst Intuition Inspired High Velocity Big Data Analysis Using PCA Ranked Fuzzy K-Means Clustering with Multi-Layer Perceptron (MLP) to Obviate Cyber Security Risk. 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). :1790–1793.
The growing prevalence of cyber threats in the world are affecting every network user. Numerous security monitoring systems are being employed to protect computer networks and resources from falling victim to cyber-attacks. There is a pressing need to have an efficient security monitoring system to monitor the large network datasets generated in this process. A large network datasets representing Malware attacks have been used in this work to establish an expert system. The characteristics of attacker's IP addresses can be extracted from our integrated datasets to generate statistical data. The cyber security expert provides to the weight of each attribute and forms a scoring system by annotating the log history. We adopted a special semi supervise method to classify cyber security log into attack, unsure and no attack by first breaking the data into 3 cluster using Fuzzy K mean (FKM), then manually label a small data (Analyst Intuition) and finally train the neural network classifier multilayer perceptron (MLP) base on the manually labelled data. By doing so, our results is very encouraging as compare to finding anomaly in a cyber security log, which generally results in creating huge amount of false detection. The method of including Artificial Intelligence (AI) and Analyst Intuition (AI) is also known as AI2. The classification results are encouraging in segregating the types of attacks.
Teoh, T. T., Nguwi, Y. Y., Elovici, Y., Cheung, N. M., Ng, W. L..  2017.  Analyst Intuition Based Hidden Markov Model on High Speed, Temporal Cyber Security Big Data. 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). :2080–2083.
Hidden Markov Models (HMM) are probabilistic models that can be used for forecasting time series data. It has seen success in various domains like finance [1-5], bioinformatics [6-8], healthcare [9-11], agriculture [12-14], artificial intelligence[15-17]. However, the use of HMM in cyber security found to date is numbered. We believe the properties of HMM being predictive, probabilistic, and its ability to model different naturally occurring states form a good basis to model cyber security data. It is hence the motivation of this work to provide the initial results of our attempts to predict security attacks using HMM. A large network datasets representing cyber security attacks have been used in this work to establish an expert system. The characteristics of attacker's IP addresses can be extracted from our integrated datasets to generate statistical data. The cyber security expert provides the weight of each attribute and forms a scoring system by annotating the log history. We applied HMM to distinguish between a cyber security attack, unsure and no attack by first breaking the data into 3 cluster using Fuzzy K mean (FKM), then manually label a small data (Analyst Intuition) and finally use HMM state-based approach. By doing so, our results are very encouraging as compare to finding anomaly in a cyber security log, which generally results in creating huge amount of false detection.
2018-01-16
Guri, M., Mirsky, Y., Elovici, Y..  2017.  9-1-1 DDoS: Attacks, Analysis and Mitigation. 2017 IEEE European Symposium on Security and Privacy (EuroS P). :218–232.

The 911 emergency service belongs to one of the 16 critical infrastructure sectors in the United States. Distributed denial of service (DDoS) attacks launched from a mobile phone botnet pose a significant threat to the availability of this vital service. In this paper we show how attackers can exploit the cellular network protocols in order to launch an anonymized DDoS attack on 911. The current FCC regulations require that all emergency calls be immediately routed regardless of the caller's identifiers (e.g., IMSI and IMEI). A rootkit placed within the baseband firmware of a mobile phone can mask and randomize all cellular identifiers, causing the device to have no genuine identification within the cellular network. Such anonymized phones can issue repeated emergency calls that cannot be blocked by the network or the emergency call centers, technically or legally. We explore the 911 infrastructure and discuss why it is susceptible to this kind of attack. We then implement different forms of the attack and test our implementation on a small cellular network. Finally, we simulate and analyze anonymous attacks on a model of current 911 infrastructure in order to measure the severity of their impact. We found that with less than 6K bots (or \$100K hardware), attackers can block emergency services in an entire state (e.g., North Carolina) for days. We believe that this paper will assist the respective organizations, lawmakers, and security professionals in understanding the scope of this issue in order to prevent possible 911-DDoS attacks in the future.