Visible to the public Biblio

Filters: Author is Jun Yan  [Clear All Filters]
2015-05-01
Yihai Zhu, Jun Yan, Yufei Tang, Sun, Y.L., Haibo He.  2014.  Resilience Analysis of Power Grids Under the Sequential Attack. Information Forensics and Security, IEEE Transactions on. 9:2340-2354.

The modern society increasingly relies on electrical service, which also brings risks of catastrophic consequences, e.g., large-scale blackouts. In the current literature, researchers reveal the vulnerability of power grids under the assumption that substations/transmission lines are removed or attacked synchronously. In reality, however, it is highly possible that such removals can be conducted sequentially. Motivated by this idea, we discover a new attack scenario, called the sequential attack, which assumes that substations/transmission lines can be removed sequentially, not synchronously. In particular, we find that the sequential attack can discover many combinations of substation whose failures can cause large blackout size. Previously, these combinations are ignored by the synchronous attack. In addition, we propose a new metric, called the sequential attack graph (SAG), and a practical attack strategy based on SAG. In simulations, we adopt three test benchmarks and five comparison schemes. Referring to simulation results and complexity analysis, we find that the proposed scheme has strong performance and low complexity.

Yihai Zhu, Jun Yan, Yufei Tang, Yan Sun, Haibo He.  2014.  The sequential attack against power grid networks. Communications (ICC), 2014 IEEE International Conference on. :616-621.

The vulnerability analysis is vital for safely running power grids. The simultaneous attack, which applies multiple failures simultaneously, does not consider the time domain in applying failures, and is limited to find unknown vulnerabilities of power grid networks. In this paper, we discover a new attack scenario, called the sequential attack, in which the failures of multiple network components (i.e., links/nodes) occur at different time. The sequence of such failures can be carefully arranged by attackers in order to maximize attack performances. This attack scenario leads to a new angle to analyze and discover vulnerabilities of grid networks. The IEEE 39 bus system is adopted as test benchmark to compare the proposed attack scenario with the existing simultaneous attack scenario. New vulnerabilities are found. For example, the sequential failure of two links, e.g., links 26 and 39 in the test benchmark, can cause 80% power loss, whereas the simultaneous failure of them causes less than 10% power loss. In addition, the sequential attack is demonstrated to be statistically stronger than the simultaneous attack. Finally, several metrics are compared and discussed in terms of whether they can be used to sharply reduce the search space for identifying strong sequential attacks.

Jun Yan, Haibo He, Yan Sun.  2014.  Integrated Security Analysis on Cascading Failure in Complex Networks. Information Forensics and Security, IEEE Transactions on. 9:451-463.

The security issue of complex networks has drawn significant concerns recently. While pure topological analyzes from a network security perspective provide some effective techniques, their inability to characterize the physical principles requires a more comprehensive model to approximate failure behavior of a complex network in reality. In this paper, based on an extended topological metric, we proposed an approach to examine the vulnerability of a specific type of complex network, i.e., the power system, against cascading failure threats. The proposed approach adopts a model called extended betweenness that combines network structure with electrical characteristics to define the load of power grid components. By using this power transfer distribution factor-based model, we simulated attacks on different components (buses and branches) in the grid and evaluated the vulnerability of the system components with an extended topological cascading failure simulator. Influence of different loading and overloading situations on cascading failures was also evaluated by testing different tolerance factors. Simulation results from a standard IEEE 118-bus test system revealed the vulnerability of network components, which was then validated on a dc power flow simulator with comparisons to other topological measurements. Finally, potential extensions of the approach were also discussed to exhibit both utility and challenge in more complex scenarios and applications.