Visible to the public Biblio

Filters: Author is Sanders, W.H.  [Clear All Filters]
2015-05-05
Zonouz, S., Davis, C.M., Davis, K.R., Berthier, R., Bobba, R.B., Sanders, W.H..  2014.  SOCCA: A Security-Oriented Cyber-Physical Contingency Analysis in Power Infrastructures. Smart Grid, IEEE Transactions on. 5:3-13.

Contingency analysis is a critical activity in the context of the power infrastructure because it provides a guide for resiliency and enables the grid to continue operating even in the case of failure. In this paper, we augment this concept by introducing SOCCA, a cyber-physical security evaluation technique to plan not only for accidental contingencies but also for malicious compromises. SOCCA presents a new unified formalism to model the cyber-physical system including interconnections among cyber and physical components. The cyber-physical contingency ranking technique employed by SOCCA assesses the potential impacts of events. Contingencies are ranked according to their impact as well as attack complexity. The results are valuable in both cyber and physical domains. From a physical perspective, SOCCA scores power system contingencies based on cyber network configuration, whereas from a cyber perspective, control network vulnerabilities are ranked according to the underlying power system topology.
 

Hussain, A., Faber, T., Braden, R., Benzel, T., Yardley, T., Jones, J., Nicol, D.M., Sanders, W.H., Edgar, T.W., Carroll, T.E. et al..  2014.  Enabling Collaborative Research for Security and Resiliency of Energy Cyber Physical Systems. Distributed Computing in Sensor Systems (DCOSS), 2014 IEEE International Conference on. :358-360.

The University of Illinois at Urbana Champaign (Illinois), Pacific Northwest National Labs (PNNL), and the University of Southern California Information Sciences Institute (USC-ISI) consortium is working toward providing tools and expertise to enable collaborative research to improve security and resiliency of cyber physical systems. In this extended abstract we discuss the challenges and the solution space. We demonstrate the feasibility of some of the proposed components through a wide-area situational awareness experiment for the power grid across the three sites.
 

Zonouz, S.A., Khurana, H., Sanders, W.H., Yardley, T.M..  2014.  RRE: A Game-Theoretic Intrusion Response and Recovery Engine. Parallel and Distributed Systems, IEEE Transactions on. 25:395-406.

Preserving the availability and integrity of networked computing systems in the face of fast-spreading intrusions requires advances not only in detection algorithms, but also in automated response techniques. In this paper, we propose a new approach to automated response called the response and recovery engine (RRE). Our engine employs a game-theoretic response strategy against adversaries modeled as opponents in a two-player Stackelberg stochastic game. The RRE applies attack-response trees (ART) to analyze undesired system-level security events within host computers and their countermeasures using Boolean logic to combine lower level attack consequences. In addition, the RRE accounts for uncertainties in intrusion detection alert notifications. The RRE then chooses optimal response actions by solving a partially observable competitive Markov decision process that is automatically derived from attack-response trees. To support network-level multiobjective response selection and consider possibly conflicting network security properties, we employ fuzzy logic theory to calculate the network-level security metric values, i.e., security levels of the system's current and potentially future states in each stage of the game. In particular, inputs to the network-level game-theoretic response selection engine, are first fed into the fuzzy system that is in charge of a nonlinear inference and quantitative ranking of the possible actions using its previously defined fuzzy rule set. Consequently, the optimal network-level response actions are chosen through a game-theoretic optimization process. Experimental results show that the RRE, using Snort's alerts, can protect large networks for which attack-response trees have more than 500 nodes.

2015-05-01
Zonouz, S., Davis, C.M., Davis, K.R., Berthier, R., Bobba, R.B., Sanders, W.H..  2014.  SOCCA: A Security-Oriented Cyber-Physical Contingency Analysis in Power Infrastructures. Smart Grid, IEEE Transactions on. 5:3-13.

Contingency analysis is a critical activity in the context of the power infrastructure because it provides a guide for resiliency and enables the grid to continue operating even in the case of failure. In this paper, we augment this concept by introducing SOCCA, a cyber-physical security evaluation technique to plan not only for accidental contingencies but also for malicious compromises. SOCCA presents a new unified formalism to model the cyber-physical system including interconnections among cyber and physical components. The cyber-physical contingency ranking technique employed by SOCCA assesses the potential impacts of events. Contingencies are ranked according to their impact as well as attack complexity. The results are valuable in both cyber and physical domains. From a physical perspective, SOCCA scores power system contingencies based on cyber network configuration, whereas from a cyber perspective, control network vulnerabilities are ranked according to the underlying power system topology.