Visible to the public Biblio

Filters: Author is Moghaddam, F. F.  [Clear All Filters]
2020-11-20
Moghaddam, F. F., Wieder, P., Yahyapour, R., Khodadadi, T..  2018.  A Reliable Ring Analysis Engine for Establishment of Multi-Level Security Management in Clouds. 2018 41st International Conference on Telecommunications and Signal Processing (TSP). :1—5.
Security and Privacy challenges are the most obstacles for the advancement of cloud computing and the erosion of trust boundaries already happening in organizations is amplified and accelerated by this emerging technology. Policy Management Frameworks are the most proper solutions to create dedicated security levels based on the sensitivity of resources and according to the mapping process between requirements cloud customers and capabilities of service providers. The most concerning issue in these frameworks is the rate of perfect matches between capabilities and requirements. In this paper, a reliable ring analysis engine has been introduced to efficiently map the security requirements of cloud customers to the capabilities of service provider and to enhance the rate of perfect matches between them for establishment of different security levels in clouds. In the suggested model a structural index has been introduced to receive the requirement and efficiently map them to the most proper security mechanism of the service provider. Our results show that this index-based engine enhances the rate of perfect matches considerably and decreases the detected conflicts in syntactic and semantic analysis.
2018-01-23
Moghaddam, F. F., Wieder, P., Yahyapour, R..  2017.  A policy-based identity management schema for managing accesses in clouds. 2017 8th International Conference on the Network of the Future (NOF). :91–98.

Security challenges are the most important obstacles for the advancement of IT-based on-demand services and cloud computing as an emerging technology. Lack of coincidence in identity management models based on defined policies and various security levels in different cloud servers is one of the most challenging issues in clouds. In this paper, a policy- based user authentication model has been presented to provide a reliable and scalable identity management and to map cloud users' access requests with defined polices of cloud servers. In the proposed schema several components are provided to define access policies by cloud servers, to apply policies based on a structural and reliable ontology, to manage user identities and to semantically map access requests by cloud users with defined polices. Finally, the reliability and efficiency of this policy-based authentication schema have been evaluated by scientific performance, security and competitive analysis. Overall, the results show that this model has met defined demands of the research to enhance the reliability and efficiency of identity management in cloud computing environments.

Ethelbert, O., Moghaddam, F. F., Wieder, P., Yahyapour, R..  2017.  A JSON Token-Based Authentication and Access Management Schema for Cloud SaaS Applications. 2017 IEEE 5th International Conference on Future Internet of Things and Cloud (FiCloud). :47–53.

Cloud computing is significantly reshaping the computing industry built around core concepts such as virtualization, processing power, connectivity and elasticity to store and share IT resources via a broad network. It has emerged as the key technology that unleashes the potency of Big Data, Internet of Things, Mobile and Web Applications, and other related technologies; but it also comes with its challenges - such as governance, security, and privacy. This paper is focused on the security and privacy challenges of cloud computing with specific reference to user authentication and access management for cloud SaaS applications. The suggested model uses a framework that harnesses the stateless and secure nature of JWT for client authentication and session management. Furthermore, authorized access to protected cloud SaaS resources have been efficiently managed. Accordingly, a Policy Match Gate (PMG) component and a Policy Activity Monitor (PAM) component have been introduced. In addition, other subcomponents such as a Policy Validation Unit (PVU) and a Policy Proxy DB (PPDB) have also been established for optimized service delivery. A theoretical analysis of the proposed model portrays a system that is secure, lightweight and highly scalable for improved cloud resource security and management.