Visible to the public Biblio

Filters: Author is Hasan, R.  [Clear All Filters]
2018-09-12
Yousef, K. M. A., AlMajali, A., Hasan, R., Dweik, W., Mohd, B..  2017.  Security risk assessment of the PeopleBot mobile robot research platform. 2017 International Conference on Electrical and Computing Technologies and Applications (ICECTA). :1–5.

Nowadays, robots are widely ubiquitous and integral part in our daily lives, which can be seen almost everywhere in industry, hospitals, military, etc. To provide remote access and control, usually robots are connected to local network or to the Internet through WiFi or Ethernet. As such, it is of great importance and of a critical mission to maintain the safety and the security access of such robots. Security threats may result in completely preventing the access and control of the robot. The consequences of this may be catastrophic and may cause an immediate physical damage to the robot. This paper aims to present a security risk assessment of the well-known PeopleBot; a mobile robot platform from Adept MobileRobots Company. Initially, we thoroughly examined security threats related to remote accessing the PeopleBot robot. We conducted an impact-oriented analysis approach on the wireless communication medium; the main method considered to remotely access the PeopleBot robot. Numerous experiments using SSH and server-client applications were conducted, and they demonstrated that certain attacks result in denying remote access service to the PeopleBot robot. Consequently and dangerously the robot becomes unavailable. Finally, we suggested one possible mitigation and provided useful conclusions to raise awareness of possible security threats on the robotic systems; especially when the robots are involved in critical missions or applications.

2018-02-02
Hossain, M., Hasan, R., Zawoad, S..  2017.  Trust-IoV: A Trustworthy Forensic Investigation Framework for the Internet of Vehicles (IoV). 2017 IEEE International Congress on Internet of Things (ICIOT). :25–32.

The Internet of Vehicles (IoV) is a complex and dynamic mobile network system that enables information sharing between vehicles, their surrounding sensors, and clouds. While IoV opens new opportunities in various applications and services to provide safety on the road, it introduces new challenges in the field of digital forensics investigations. The existing tools and procedures of digital forensics cannot meet the highly distributed, decentralized, dynamic, and mobile infrastructures of the IoV. Forensic investigators will face challenges while identifying necessary pieces of evidence from the IoV environment, and collecting and analyzing the evidence. In this article, we propose TrustIoV - a digital forensic framework for the IoV systems that provides mechanisms to collect and store trustworthy evidence from the distributed infrastructure. Trust-IoV maintains a secure provenance of the evidence to ensure the integrity of the stored evidence and allows investigators to verify the integrity of the evidence during an investigation. Our experimental results on a simulated environment suggest that Trust-IoV can operate with minimal overhead while ensuring the trustworthiness of evidence in a strong adversarial scenario.

2018-01-23
Hossain, M., Hasan, R..  2017.  Boot-IoT: A Privacy-Aware Authentication Scheme for Secure Bootstrapping of IoT Nodes. 2017 IEEE International Congress on Internet of Things (ICIOT). :1–8.

The Internet of Things (IoT) devices perform security-critical operations and deal with sensitive information in the IoT-based systems. Therefore, the increased deployment of smart devices will make them targets for cyber attacks. Adversaries can perform malicious actions, leak private information, and track devices' and their owners' location by gaining unauthorized access to IoT devices and networks. However, conventional security protocols are not primarily designed for resource constrained devices and therefore cannot be applied directly to IoT systems. In this paper, we propose Boot-IoT - a privacy-preserving, lightweight, and scalable security scheme for limited resource devices. Boot-IoT prevents a malicious device from joining an IoT network. Boot-IoT enables a device to compute a unique identity for authentication each time the device enters a network. Moreover, during device to device communication, Boot-IoT provides a lightweight mutual authentication scheme that ensures privacy-preserving identity usages. We present a detailed analysis of the security strength of BootIoT. We implemented a prototype of Boot-IoT on IoT devices powered by Contiki OS and provided an extensive comparative analysis of Boot-IoT with contemporary authentication methods. Our results show that Boot-IoT is resource efficient and provides better scalability compared to current solutions.