Visible to the public Biblio

Filters: Author is Dalton, C.  [Clear All Filters]
2018-02-02
Bruel, P., Chalamalasetti, S. R., Dalton, C., Hajj, I. El, Goldman, A., Graves, C., Hwu, W. m, Laplante, P., Milojicic, D., Ndu, G. et al..  2017.  Generalize or Die: Operating Systems Support for Memristor-Based Accelerators. 2017 IEEE International Conference on Rebooting Computing (ICRC). :1–8.

The deceleration of transistor feature size scaling has motivated growing adoption of specialized accelerators implemented as GPUs, FPGAs, ASICs, and more recently new types of computing such as neuromorphic, bio-inspired, ultra low energy, reversible, stochastic, optical, quantum, combinations, and others unforeseen. There is a tension between specialization and generalization, with the current state trending to master slave models where accelerators (slaves) are instructed by a general purpose system (master) running an Operating System (OS). Traditionally, an OS is a layer between hardware and applications and its primary function is to manage hardware resources and provide a common abstraction to applications. Does this function, however, apply to new types of computing paradigms? This paper revisits OS functionality for memristor-based accelerators. We explore one accelerator implementation, the Dot Product Engine (DPE), for a select pattern of applications in machine learning, imaging, and scientific computing and a small set of use cases. We explore typical OS functionality, such as reconfiguration, partitioning, security, virtualization, and programming. We also explore new types of functionality, such as precision and trustworthiness of reconfiguration. We claim that making an accelerator, such as the DPE, more general will result in broader adoption and better utilization.