Visible to the public Biblio

Filters: Author is Xia, C.  [Clear All Filters]
2019-01-21
Zhang, Z., Li, Z., Xia, C., Cui, J., Ma, J..  2018.  H-Securebox: A Hardened Memory Data Protection Framework on ARM Devices. 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). :325–332.

ARM devices (mobile phone, IoT devices) are getting more popular in our daily life due to the low power consumption and cost. These devices carry a huge number of user's private information, which attracts attackers' attention and increase the security risk. The operating systems (e.g., Android, Linux) works out many memory data protection strategies on user's private information. However, the monolithic OS may contain security vulnerabilities that are exploited by the attacker to get root or even kernel privilege. Once the kernel privilege is obtained by the attacker, all data protection strategies will be gone and user's private information can be taken away. In this paper, we propose a hardened memory data protection framework called H-Securebox to defeat kernel-level memory data stolen attacks. H-Securebox leverages ARM hardware virtualization technique to protect the data on the memory with hypervisor privilege. We designed three types H-Securebox for programing developers to use. Although the attacker may have kernel privilege, she can not touch private data inside H-Securebox, since hypervisor privilege is higher than kernel privilege. With the implementation of H-Securebox system assisting by a tiny hypervisor on Raspberry Pi2 development board, we measure the performance overhead of our system and do the security evaluations. The results positively show that the overhead is negligible and the malicious application with root or kernel privilege can not access the private data protected by our system.

2018-02-06
Liu, X., Xia, C., Wang, T., Zhong, L..  2017.  CloudSec: A Novel Approach to Verifying Security Conformance at the Bottom of the Cloud. 2017 IEEE International Congress on Big Data (BigData Congress). :569–576.

In the process of big data analysis and processing, a key concern blocking users from storing and processing their data in the cloud is their misgivings about the security and performance of cloud services. There is an urgent need to develop an approach that can help each cloud service provider (CSP) to demonstrate that their infrastructure and service behavior can meet the users' expectations. However, most of the prior research work focused on validating the process compliance of cloud service without an accurate description of the basic service behaviors, and could not measure the security capability. In this paper, we propose a novel approach to verify cloud service security conformance called CloudSec, which reduces the description gap between the cloud provider and customer through modeling cloud service behaviors (CloudBeh Model) and security SLA (SecSLA Model). These models enable a systematic integration of security constraints and service behavior into cloud while using UPPAAL to check the conformance, which can not only check CloudBeh performance metrics conformance, but also verify whether the security constraints meet the SecSLA. The proposed approach is validated through case study and experiments with a cloud storage service based on OpenStack, which illustrates CloudSec approach effectiveness and can be applied in real cloud scenarios.