Biblio
The objective of this paper is to outline the design specification, implementation and evaluation of a proposed accelerated encryption framework which deploys both homomorphic and symmetric-key encryptions to serve the privacy preserving processing; in particular, as a sub-system within the Privacy Preserving Speech Processing framework architecture as part of the PPSP-in-Cloud Platform. Following a preliminary study of GPU efficiency gains optimisations benchmarked for AES implementation we have addressed and resolved the Big Integer processing challenges in parallel implementation of bilinear pairing thus enabling the creation of partially homomorphic encryption schemes which facilitates applications such as speech processing in the encrypted domain on the cloud. This novel implementation has been validated in laboratory tests using a standard speech corpus and can be used for other application domains to support secure computation and privacy preserving big data storage/processing in the cloud.