Visible to the public Biblio

Filters: Author is Zhang, Yuankai  [Clear All Filters]
2019-10-30
Demoulin, Henri Maxime, Vaidya, Tavish, Pedisich, Isaac, DiMaiolo, Bob, Qian, Jingyu, Shah, Chirag, Zhang, Yuankai, Chen, Ang, Haeberlen, Andreas, Loo, Boon Thau et al..  2018.  DeDoS: Defusing DoS with Dispersion Oriented Software. Proceedings of the 34th Annual Computer Security Applications Conference. :712-722.

This paper presents DeDoS, a novel platform for mitigating asymmetric DoS attacks. These attacks are particularly challenging since even attackers with limited resources can exhaust the resources of well-provisioned servers. DeDoS offers a framework to deploy code in a highly modular fashion. If part of the application stack is experiencing a DoS attack, DeDoS can massively replicate only the affected component, potentially across many machines. This allows scaling of the impacted resource separately from the rest of the application stack, so that resources can be precisely added where needed to combat the attack. Our evaluation results show that DeDoS incurs reasonable overheads in normal operations, and that it significantly outperforms standard replication techniques when defending against a range of asymmetric attacks.

2018-02-14
Zhang, Yuankai, O'Neill, Adam, Sherr, Micah, Zhou, Wenchao.  2017.  Privacy-preserving Network Provenance. Proc. VLDB Endow.. 10:1550–1561.
Network accountability, forensic analysis, and failure diagnosis are becoming increasingly important for network management and security. Network provenance significantly aids network administrators in these tasks by explaining system behavior and revealing the dependencies between system states. Although resourceful, network provenance can sometimes be too rich, revealing potentially sensitive information that was involved in system execution. In this paper, we propose a cryptographic approach to preserve the confidentiality of provenance (sub)graphs while allowing users to query and access the parts of the graph for which they are authorized. Our proposed solution is a novel application of searchable symmetric encryption (SSE) and more generally structured encryption (SE). Our SE-enabled provenance system allows a node to enforce access control policies over its provenance data even after the data has been shipped to remote nodes (e.g., for optimization purposes). We present a prototype of our design and demonstrate its practicality, scalability, and efficiency for both provenance maintenance and querying.