Visible to the public Biblio

Filters: Author is Budiarto, R.  [Clear All Filters]
2021-03-09
Susanto, Stiawan, D., Arifin, M. A. S., Idris, M. Y., Budiarto, R..  2020.  IoT Botnet Malware Classification Using Weka Tool and Scikit-learn Machine Learning. 2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI). :15—20.

Botnet is one of the threats to internet network security-Botmaster in carrying out attacks on the network by relying on communication on network traffic. Internet of Things (IoT) network infrastructure consists of devices that are inexpensive, low-power, always-on, always connected to the network, and are inconspicuous and have ubiquity and inconspicuousness characteristics so that these characteristics make IoT devices an attractive target for botnet malware attacks. In identifying whether packet traffic is a malware attack or not, one can use machine learning classification methods. By using Weka and Scikit-learn analysis tools machine learning, this paper implements four machine learning algorithms, i.e.: AdaBoost, Decision Tree, Random Forest, and Naïve Bayes. Then experiments are conducted to measure the performance of the four algorithms in terms of accuracy, execution time, and false positive rate (FPR). Experiment results show that the Weka tool provides more accurate and efficient classification methods. However, in false positive rate, the use of Scikit-learn provides better results.

2018-02-15
Zalbina, M. R., Septian, T. W., Stiawan, D., Idris, M. Y., Heryanto, A., Budiarto, R..  2017.  Payload recognition and detection of Cross Site Scripting attack. 2017 2nd International Conference on Anti-Cyber Crimes (ICACC). :172–176.

Web Application becomes the leading solution for the utilization of systems that need access globally, distributed, cost-effective, as well as the diversity of the content that can run on this technology. At the same time web application security have always been a major issue that must be considered due to the fact that 60% of Internet attacks targeting web application platform. One of the biggest impacts on this technology is Cross Site Scripting (XSS) attack, the most frequently occurred and are always in the TOP 10 list of Open Web Application Security Project (OWASP). Vulnerabilities in this attack occur in the absence of checking, testing, and the attention about secure coding practices. There are several alternatives to prevent the attacks that associated with this threat. Network Intrusion Detection System can be used as one solution to prevent the influence of XSS Attack. This paper investigates the XSS attack recognition and detection using regular expression pattern matching and a preprocessing method. Experiments are conducted on a testbed with the aim to reveal the behaviour of the attack.