Visible to the public Biblio

Filters: Author is Isakov, M.  [Clear All Filters]
2019-01-21
Isakov, M., Bu, L., Cheng, H., Kinsy, M. A..  2018.  Preventing Neural Network Model Exfiltration in Machine Learning Hardware Accelerators. 2018 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :62–67.

Machine learning (ML) models are often trained using private datasets that are very expensive to collect, or highly sensitive, using large amounts of computing power. The models are commonly exposed either through online APIs, or used in hardware devices deployed in the field or given to the end users. This provides an incentive for adversaries to steal these ML models as a proxy for gathering datasets. While API-based model exfiltration has been studied before, the theft and protection of machine learning models on hardware devices have not been explored as of now. In this work, we examine this important aspect of the design and deployment of ML models. We illustrate how an attacker may acquire either the model or the model architecture through memory probing, side-channels, or crafted input attacks, and propose (1) power-efficient obfuscation as an alternative to encryption, and (2) timing side-channel countermeasures.

2018-02-21
Kinsy, M. A., Khadka, S., Isakov, M., Farrukh, A..  2017.  Hermes: Secure heterogeneous multicore architecture design. 2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :14–20.

The emergence of general-purpose system-on-chip (SoC) architectures has given rise to a number of significant security challenges. The current trend in SoC design is system-level integration of heterogeneous technologies consisting of a large number of processing elements such as programmable RISC cores, memory, DSPs, and accelerator function units/ASIC. These processing elements may come from different providers, and application executable code may have varying levels of trust. Some of the pressing architecture design questions are: (1) how to implement multi-level user-defined security; (2) how to optimally and securely share resources and data among processing elements. In this work, we develop a secure multicore architecture, named Hermes. It represents a new architectural framework that integrates multiple processing elements (called tenants) of secure and non-secure cores into the same chip design while (a) maintaining individual tenant security, (b) preventing data leakage and corruption, and (c) promoting collaboration among the tenants. The Hermes architecture is based on a programmable secure router interface and a trust-aware routing algorithm. With 17% hardware overhead, it enables the implementation of processing-element-oblivious secure multicore systems with a programmable distributed group key management scheme.