Visible to the public Biblio

Filters: Author is Mangard, S.  [Clear All Filters]
2019-10-14
Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M., Mangard, S., Prescher, T. et al..  2019.  Spectre Attacks: Exploiting Speculative Execution. 2019 IEEE Symposium on Security and Privacy (SP). :1–19.

Modern processors use branch prediction and speculative execution to maximize performance. For example, if the destination of a branch depends on a memory value that is in the process of being read, CPUs will try to guess the destination and attempt to execute ahead. When the memory value finally arrives, the CPU either discards or commits the speculative computation. Speculative logic is unfaithful in how it executes, can access the victim's memory and registers, and can perform operations with measurable side effects. Spectre attacks involve inducing a victim to speculatively perform operations that would not occur during correct program execution and which leak the victim's confidential information via a side channel to the adversary. This paper describes practical attacks that combine methodology from side channel attacks, fault attacks, and return-oriented programming that can read arbitrary memory from the victim's process. More broadly, the paper shows that speculative execution implementations violate the security assumptions underpinning numerous software security mechanisms, including operating system process separation, containerization, just-in-time (JIT) compilation, and countermeasures to cache timing and side-channel attacks. These attacks represent a serious threat to actual systems since vulnerable speculative execution capabilities are found in microprocessors from Intel, AMD, and ARM that are used in billions of devices. While makeshift processor-specific countermeasures are possible in some cases, sound solutions will require fixes to processor designs as well as updates to instruction set architectures (ISAs) to give hardware architects and software developers a common understanding as to what computation state CPU implementations are (and are not) permitted to leak.

2018-02-21
Conti, F., Schilling, R., Schiavone, P. D., Pullini, A., Rossi, D., Gürkaynak, F. K., Muehlberghuber, M., Gautschi, M., Loi, I., Haugou, G. et al..  2017.  An IoT Endpoint System-on-Chip for Secure and Energy-Efficient Near-Sensor Analytics. IEEE Transactions on Circuits and Systems I: Regular Papers. 64:2481–2494.

Near-sensor data analytics is a promising direction for internet-of-things endpoints, as it minimizes energy spent on communication and reduces network load - but it also poses security concerns, as valuable data are stored or sent over the network at various stages of the analytics pipeline. Using encryption to protect sensitive data at the boundary of the on-chip analytics engine is a way to address data security issues. To cope with the combined workload of analytics and encryption in a tight power envelope, we propose Fulmine, a system-on-chip (SoC) based on a tightly-coupled multi-core cluster augmented with specialized blocks for compute-intensive data processing and encryption functions, supporting software programmability for regular computing tasks. The Fulmine SoC, fabricated in 65-nm technology, consumes less than 20mW on average at 0.8V achieving an efficiency of up to 70pJ/B in encryption, 50pJ/px in convolution, or up to 25MIPS/mW in software. As a strong argument for real-life flexible application of our platform, we show experimental results for three secure analytics use cases: secure autonomous aerial surveillance with a state-of-the-art deep convolutional neural network (CNN) consuming 3.16pJ per equivalent reduced instruction set computer operation, local CNN-based face detection with secured remote recognition in 5.74pJ/op, and seizure detection with encrypted data collection from electroencephalogram within 12.7pJ/op.