Biblio
This paper studies the problem of designing optimal privacy mechanism with less energy cost. The eavesdropper and the defender with limited resources should choose which channel to eavesdrop and defend, respectively. A zero-sum stochastic game framework is used to model the interaction between the two players and the game is solved through the Nash Q-learning approach. A numerical example is given to verify the proposed method.
ISSN: 2688-0938
Towards advancing the use of big keys as a practical defense against key exfiltration, this paper provides efficiency improvements for cryptographic schemes in the bounded retrieval model (BRM). We identify probe complexity (the number of scheme accesses to the slow storage medium storing the big key) as the dominant cost. Our main technical contribution is what we call the large-alphabet subkey prediction lemma. It gives good bounds on the predictability under leakage of a random sequence of blocks of the big key, as a function of the block size. We use it to significantly reduce the probe complexity required to attain a given level of security. Together with other techniques, this yields security-preserving performance improvements for BRM symmetric encryption schemes and BRM public-key identification schemes.