Biblio
In Vehicular networks, privacy, especially the vehicles' location privacy is highly concerned. Several pseudonymous based privacy protection mechanisms have been established and standardized in the past few years by IEEE and ETSI. However, vehicular networks are still vulnerable to Sybil attack. In this paper, a Sybil attack detection method based on k-Nearest Neighbours (kNN) classification algorithm is proposed. In this method, vehicles are classified based on the similarity in their driving patterns. Furthermore, the kNN methods' high runtime complexity issue is also optimized. The simulation results show that our detection method can reach a high detection rate while keeping error rate low.
Vehicular networks have been drawing special atten- tion in recent years, due to its importance in enhancing driving experience and improving road safety in future smart city. In past few years, several security services, based on cryptography, PKI and pseudonymous, have been standardized by IEEE and ETSI. However, vehicular networks are still vulnerable to various attacks, especially Sybil attack. In this paper, a Support Vector Machine (SVM) based Sybil attack detection method is proposed. We present three SVM kernel functions based classifiers to distinguish the malicious nodes from benign ones via evaluating the variance in their Driving Pattern Matrices (DPMs). The effectiveness of our proposed solution is evaluated through extensive simulations based on SUMO simulator and MATLAB. The results show that the proposed detection method can achieve a high detection rate with low error rate even under a dynamic traffic environment.
Often considered as the brain of an industrial process, Industrial control systems are presented as the vital part of today's critical infrastructure due to their crucial role in process control and monitoring. Any failure or error in the system will have a considerable damage. Their openness to the internet world raises the risk related to cyber-attacks. Therefore, it's necessary to consider cyber security challenges while designing an ICS in order to provide security services such as authentication, integrity, access control and secure communication channels. To implement such services, it's necessary to provide an efficient key management system (KMS) as an infrastructure for all cryptographic operations, while preserving the functional characteristics of ICS. In this paper we will analyze existing KMS and their suitability for ICS, then we propose a new KMS based on Identity Based Cryptography (IBC) as a better alternative to traditional KMS. In our proposal, we consider solving two security problems in IBC which brings it up to be more suitable for ICS.