Visible to the public Biblio

Filters: Author is Dietzel, Christoph  [Clear All Filters]
2019-06-10
Dietzel, Christoph, Wichtlhuber, Matthias, Smaragdakis, Georgios, Feldmann, Anja.  2018.  Stellar: Network Attack Mitigation Using Advanced Blackholing. Proceedings of the 14th International Conference on Emerging Networking EXperiments and Technologies. :152–164.

Network attacks, including Distributed Denial-of-Service (DDoS), continuously increase in terms of bandwidth along with damage (recent attacks exceed 1.7 Tbps) and have a devastating impact on the targeted companies/governments. Over the years, mitigation techniques, ranging from blackholing to policy-based filtering at routers, and on to traffic scrubbing, have been added to the network operator's toolbox. Even though these mitigation techniques provide some protection, they either yield severe collateral damage, e.g., dropping legitimate traffic (blackholing), are cost-intensive, or do not scale well for Tbps level attacks (ACL filtering, traffic scrubbing), or require cooperation and sharing of resources (Flowspec). In this paper, we propose Advanced Blackholing and its system realization Stellar. Advanced blackholing builds upon the scalability of blackholing while limiting collateral damage by increasing its granularity. Moreover, Stellar reduces the required level of cooperation to enhance mitigation effectiveness. We show that fine-grained blackholing can be realized, e.g., at a major IXP, by combining available hardware filters with novel signaling mechanisms. We evaluate the scalability and performance of Stellar at a large IXP that interconnects more than 800 networks, exchanges more than 6 Tbps traffic, and witnesses many network attacks every day. Our results show that network attacks, e.g., DDoS amplification attacks, can be successfully mitigated while the networks and services under attack continue to operate untroubled.

2018-08-23
Giotsas, Vasileios, Richter, Philipp, Smaragdakis, Georgios, Feldmann, Anja, Dietzel, Christoph, Berger, Arthur.  2017.  Inferring BGP Blackholing Activity in the Internet. Proceedings of the 2017 Internet Measurement Conference. :1–14.
The Border Gateway Protocol (BGP) has been used for decades as the de facto protocol to exchange reachability information among networks in the Internet. However, little is known about how this protocol is used to restrict reachability to selected destinations, e.g., that are under attack. While such a feature, BGP blackholing, has been available for some time, we lack a systematic study of its Internet-wide adoption, practices, and network efficacy, as well as the profile of blackholed destinations. In this paper, we develop and evaluate a methodology to automatically detect BGP blackholing activity in the wild. We apply our method to both public and private BGP datasets. We find that hundreds of networks, including large transit providers, as well as about 50 Internet exchange points (IXPs) offer blackholing service to their customers, peers, and members. Between 2014–2017, the number of blackholed prefixes increased by a factor of 6, peaking at 5K concurrently blackholed prefixes by up to 400 Autonomous Systems. We assess the effect of blackholing on the data plane using both targeted active measurements as well as passive datasets, finding that blackholing is indeed highly effective in dropping traffic before it reaches its destination, though it also discards legitimate traffic. We augment our findings with an analysis of the target IP addresses of blackholing. Our tools and insights are relevant for operators considering offering or using BGP blackholing services as well as for researchers studying DDoS mitigation in the Internet.
2018-02-21
Dietzel, Christoph, Antichi, Gianni, Castro, Ignacio, Fernandes, Eder L., Chiesa, Marco, Kopp, Daniel.  2017.  SDN-enabled Traffic Engineering and Advanced Blackholing at IXPs. Proceedings of the Symposium on SDN Research. :181–182.

While the clean slate approach proposed by Software Defined Networking (SDN) promises radical changes in the stagnant state of network management, SDN innovation has not gone beyond the intra-domain level. For the inter-domain ecosystem to benefit from the advantages of SDN, Internet Exchange Points (IXPs) are the ideal place: a central interconnection hub through which a large share of the Internet can be affected. In this demo, we showcase the ENDEAVOUR platform: a new software defined exchange approach readily deployable in commercial IXPs. We demonstrate here our implementations of traffic engineering and Distributed Denial of Service mitigation, as well as how member networks cash in on the advanced SDN-features of ENDEAVOUR, typically not available in legacy networks.