Visible to the public Biblio

Filters: Author is Li, Frank  [Clear All Filters]
2019-04-05
Acar, Gunes, Huang, Danny Yuxing, Li, Frank, Narayanan, Arvind, Feamster, Nick.  2018.  Web-Based Attacks to Discover and Control Local IoT Devices. Proceedings of the 2018 Workshop on IoT Security and Privacy. :29-35.
In this paper, we present two web-based attacks against local IoT devices that any malicious web page or third-party script can perform, even when the devices are behind NATs. In our attack scenario, a victim visits the attacker's website, which contains a malicious script that communicates with IoT devices on the local network that have open HTTP servers. We show how the malicious script can circumvent the same-origin policy by exploiting error messages on the HTML5 MediaError interface or by carrying out DNS rebinding attacks. We demonstrate that the attacker can gather sensitive information from the devices (e.g., unique device identifiers and precise geolocation), track and profile the owners to serve ads, or control the devices by playing arbitrary videos and rebooting. We propose potential countermeasures to our attacks that users, browsers, DNS providers, and IoT vendors can implement.
2018-02-28
Murdock, Austin, Li, Frank, Bramsen, Paul, Durumeric, Zakir, Paxson, Vern.  2017.  Target Generation for Internet-wide IPv6 Scanning. Proceedings of the 2017 Internet Measurement Conference. :242–253.
Fast IPv4 scanning has enabled researchers to answer a wealth of new security and measurement questions. However, while increased network speeds and computational power have enabled comprehensive scans of the IPv4 address space, a brute-force approach does not scale to IPv6. Systems are limited to scanning a small fraction of the IPv6 address space and require an algorithmic approach to determine a small set of candidate addresses to probe. In this paper, we first explore the considerations that guide designing such algorithms. We introduce a new approach that identifies dense address space regions from a set of known "seed" addresses and generates a set of candidates to scan. We compare our algorithm 6Gen against Entropy/IP—the current state of the art—finding that we can recover between 1–8 times as many addresses for the five candidate datasets considered in the prior work. However, during our analysis, we uncover widespread IP aliasing in IPv6 networks. We discuss its effect on target generation and explore preliminary approaches for detecting aliased regions.