Visible to the public Biblio

Filters: Author is Bonaventure, Olivier  [Clear All Filters]
2020-06-19
Michel, François, De Coninck, Quentin, Bonaventure, Olivier.  2019.  QUIC-FEC: Bringing the benefits of Forward Erasure Correction to QUIC. 2019 IFIP Networking Conference (IFIP Networking). :1—9.

Originally implemented by Google, QUIC gathers a growing interest by providing, on top of UDP, the same service as the classical TCP/TLS/HTTP/2 stack. The IETF will finalise the QUIC specification in 2019. A key feature of QUIC is that almost all its packets, including most of its headers, are fully encrypted. This prevents eavesdropping and interferences caused by middleboxes. Thanks to this feature and its clean design, QUIC is easier to extend than TCP. In this paper, we revisit the reliable transmission mechanisms that are included in QUIC. More specifically, we design, implement and evaluate Forward Erasure Correction (FEC) extensions to QUIC. These extensions are mainly intended for high-delays and lossy communications such as In-Flight Communications. Our design includes a generic FEC frame and our implementation supports the XOR, Reed-Solomon and Convolutional RLC error-correcting codes. We also conservatively avoid hindering the loss-based congestion signal by distinguishing the packets that have been received from the packets that have been recovered by the FEC. We evaluate its performance by applying an experimental design covering a wide range of delay and packet loss conditions with reproducible experiments. These confirm that our modular design allows the protocol to adapt to the network conditions. For long data transfers or when the loss rate and delay are small, the FEC overhead negatively impacts the download completion time. However, with high packet loss rates and long delays or smaller files, FEC allows drastically reducing the download completion time by avoiding costly retransmission timeouts. These results show that there is a need to use FEC adaptively to the network conditions.

2018-02-28
Lebrun, David, Bonaventure, Olivier.  2017.  Implementing IPv6 Segment Routing in the Linux Kernel. Proceedings of the Applied Networking Research Workshop. :35–41.
IPv6 Segment Routing is a major IPv6 extension that provides a modern version of source routing that is currently being developed within the Internet Engineering Task Force (IETF). We propose the first open-source implementation of IPv6 Segment Routing in the Linux kernel. We first describe it in details and explain how it can be used on both endhosts and routers. We then evaluate and compare its performance with plain IPv6 packet forwarding in a lab environment. Our measurements indicate that the performance penalty of inserting IPv6 Segment Routing Headers or encapsulating packets is limited to less than 15%. On the other hand, the optional HMAC security feature of IPv6 Segment Routing is costly in a pure software implementation. Since our implementation has been included in the official Linux 4.10 kernel, we expect that it will be extended by other researchers for new use cases.