Visible to the public Biblio

Filters: Author is Gu, Y. X.  [Clear All Filters]
2021-03-04
Sun, H., Liu, L., Feng, L., Gu, Y. X..  2014.  Introducing Code Assets of a New White-Box Security Modeling Language. 2014 IEEE 38th International Computer Software and Applications Conference Workshops. :116—121.

This paper argues about a new conceptual modeling language for the White-Box (WB) security analysis. In the WB security domain, an attacker may have access to the inner structure of an application or even the entire binary code. It becomes pretty easy for attackers to inspect, reverse engineer, and tamper the application with the information they steal. The basis of this paper is the 14 patterns developed by a leading provider of software protection technologies and solutions. We provide a part of a new modeling language named i-WBS (White-Box Security) to describe problems of WB security better. The essence of White-Box security problem is code security. We made the new modeling language focus on code more than ever before. In this way, developers who are not security experts can easily understand what they need to really protect.

2018-03-05
McDonald, J. T., Manikyam, R., Glisson, W. B., Andel, T. R., Gu, Y. X..  2017.  Enhanced Operating System Protection to Support Digital Forensic Investigations. 2017 IEEE Trustcom/BigDataSE/ICESS. :650–659.

Digital forensic investigators today are faced with numerous problems when recovering footprints of criminal activity that involve the use of computer systems. Investigators need the ability to recover evidence in a forensically sound manner, even when criminals actively work to alter the integrity, veracity, and provenance of data, applications and software that are used to support illicit activities. In many ways, operating systems (OS) can be strengthened from a technological viewpoint to support verifiable, accurate, and consistent recovery of system data when needed for forensic collection efforts. In this paper, we extend the ideas for forensic-friendly OS design by proposing the use of a practical form of computing on encrypted data (CED) and computing with encrypted functions (CEF) which builds upon prior work on component encryption (in circuits) and white-box cryptography (in software). We conduct experiments on sample programs to provide analysis of the approach based on security and efficiency, illustrating how component encryption can strengthen key OS functions and improve tamper-resistance to anti-forensic activities. We analyze the tradeoff space for use of the algorithm in a holistic approach that provides additional security and comparable properties to fully homomorphic encryption (FHE).