Visible to the public Biblio

Filters: Author is Goumas, Georgios  [Clear All Filters]
2023-08-23
Nikolos, Orestis Lagkas, Goumas, Georgios, Koziris, Nectarios.  2022.  Deverlay: Container Snapshots For Virtual Machines. 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid). :11—20.
The Cloud Native paradigm has quickly emerged as a new trend in Web Services architectures. Applications are now developed as a network of microservices and functions that can be quickly re-deployed anywhere, decoupled from their state. In this scenario, workloads are usually packaged as container images that can be quickly provisioned anywhere in a provider web service. To enforce security, traditional Docker container runtime mechanisms are now being enhanced by stronger isolation techniques such as lightweight hardware level virtualization. Such sandboxing inserts a strong boundary - the guest space - and therefore security containers do not share filesystem semantics with the host Operating System. However, the existing container storage drivers are designed and optimized to run directly on the host. In this paper we bridge the gap between traditional containers and virtualized containers. We present Deverlay, a container storage driver that prepares a block-based container root filesystem view, targeting lightweight Virtual Machines and keeping host native execution compatibility. We show that, in contrast to other block-based drivers, Deverlay can boot 80 micro VM containers in less than 4s by efficiently sharing host cache buffers among containers and reducing I/O disk access by 97.51 %.
2018-03-19
Llewellynn, Tim, Fernández-Carrobles, M. Milagro, Deniz, Oscar, Fricker, Samuel, Storkey, Amos, Pazos, Nuria, Velikic, Gordana, Leufgen, Kirsten, Dahyot, Rozenn, Koller, Sebastian et al..  2017.  BONSEYES: Platform for Open Development of Systems of Artificial Intelligence: Invited Paper. Proceedings of the Computing Frontiers Conference. :299–304.

The Bonseyes EU H2020 collaborative project aims to develop a platform consisting of a Data Marketplace, a Deep Learning Toolbox, and Developer Reference Platforms for organizations wanting to adopt Artificial Intelligence. The project will be focused on using artificial intelligence in low power Internet of Things (IoT) devices ("edge computing"), embedded computing systems, and data center servers ("cloud computing"). It will bring about orders of magnitude improvements in efficiency, performance, reliability, security, and productivity in the design and programming of systems of artificial intelligence that incorporate Smart Cyber-Physical Systems (CPS). In addition, it will solve a causality problem for organizations who lack access to Data and Models. Its open software architecture will facilitate adoption of the whole concept on a wider scale. To evaluate the effectiveness, technical feasibility, and to quantify the real-world improvements in efficiency, security, performance, effort and cost of adding AI to products and services using the Bonseyes platform, four complementary demonstrators will be built. Bonseyes platform capabilities are aimed at being aligned with the European FI-PPP activities and take advantage of its flagship project FIWARE. This paper provides a description of the project motivation, goals and preliminary work.