Visible to the public Biblio

Filters: Author is Showkatbakhsh, M.  [Clear All Filters]
2018-03-19
Showkatbakhsh, M., Shoukry, Y., Chen, R. H., Diggavi, S., Tabuada, P..  2017.  An SMT-Based Approach to Secure State Estimation under Sensor and Actuator Attacks. 2017 IEEE 56th Annual Conference on Decision and Control (CDC). :157–162.

This paper addresses the problem of state estimation of a linear time-invariant system when some of the sensors or/and actuators are under adversarial attack. In our set-up, the adversarial agent attacks a sensor (actuator) by manipulating its measurement (input), and we impose no constraint on how the measurements (inputs) are corrupted. We introduce the notion of ``sparse strong observability'' to characterize systems for which the state estimation is possible, given bounds on the number of attacked sensors and actuators. Furthermore, we develop a secure state estimator based on Satisfiability Modulo Theory (SMT) solvers.