Biblio
Filters: Author is Hasslinger, G. [Clear All Filters]
Comparing Web Cache Implementations for Fast O(1) Updates Based on LRU, LFU and Score Gated Strategies. 2018 IEEE 23rd International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :1–7.
.
2018. To be applicable to high user request workloads, web caching strategies benefit from low implementation and update effort. In this regard, the Least Recently Used (LRU) replacement principle is a simple and widely-used method. Despite its popularity, LRU has deficits in the achieved hit rate performance and cannot consider transport and network optimization criteria for selecting content to be cached. As a result, many alternatives have been proposed in the literature, which improve the cache performance at the cost of higher complexity. In this work, we evaluate the implementation complexity and runtime performance of LRU, Least Frequently Used (LFU), and score based strategies in the class of fast O(1) updates with constant effort per request. We implement Window LFU (W-LFU) within this class and show that O(1) update effort can be achieved. We further compare fast update schemes of Score Gated LRU and new Score Gated Polling (SGP). SGP is simpler than LRU and provides full flexibility for arbitrary score assessment per data object as information basis for performance optimization regarding network cost and quality measures.
Web Caching Evaluation from Wikipedia Request Statistics. 2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt). :1–6.
.
2017. Wikipedia is one of the most popular information platforms on the Internet. The user access pattern to Wikipedia pages depends on their relevance in the current worldwide social discourse. We use publically available statistics about the top-1000 most popular pages on each day to estimate the efficiency of caches for support of the platform. While the data volumes are moderate, the main goal of Wikipedia caches is to reduce access times for page views and edits. We study the impact of most popular pages on the achievable cache hit rate in comparison to Zipf request distributions and we include daily dynamics in popularity.