Visible to the public Biblio

Filters: Author is Durand, Arnaud  [Clear All Filters]
2018-06-11
Gremaud, Pascal, Durand, Arnaud, Pasquier, Jacques.  2017.  A Secure, Privacy-preserving IoT Middleware Using Intel SGX. Proceedings of the Seventh International Conference on the Internet of Things. :22:1–22:2.
With Internet of Things (IoT) middleware solutions moving towards cloud computing, the problems of trust in cloud platforms and data privacy need to be solved. The emergence of Trusted Execution Environments (TEEs) opens new perspectives to increase security in cloud applications. We propose a privacy-preserving IoT middleware, using Intel Software Guard Extensions (SGX) to create a secure system on untrusted platforms. An encrypted index is used as a database and communication with the application is protected using asymmetric encryption. This set of measures allows our system to process events in an orchestration engine without revealing data to the hosting cloud platform.
2018-03-26
Durand, Arnaud, Gremaud, Pascal, Pasquier, Jacques.  2017.  Decentralized Web of Trust and Authentication for the Internet of Things. Proceedings of the Seventh International Conference on the Internet of Things. :27:1–27:2.

As the Internet of Thing (IoT) matures, a lot of concerns are being raised about security, privacy and interoperability. The Web of Things (WoT) model leverages web technologies to improve interoperability. Due to its distributed components, the web scaled well beyond initial expectations. Still, secure authentication and communication across organization boundaries rely on the Public Key Infrastructure (PKI) which is a non-transparent, centralized single point of failure. We can improve transparency and reduce the chain of trust–-thus significantly improving the IoT security–-by empowering blockchain technology and web security standards. In this paper, we build a scalable, decentralized IoT-centric PKI and discuss how we can combine it with the emerging web authentication and authorization framework for constrained environments.