Biblio
Writing style is a combination of consistent decisions associated with a specific author at different levels of language production, including lexical, syntactic, and structural. In this paper, we introduce a style-aware neural model to encode document information from three stylistic levels and evaluate it in the domain of authorship attribution. First, we propose a simple way to jointly encode syntactic and lexical representations of sentences. Subsequently, we employ an attention-based hierarchical neural network to encode the syntactic and semantic structure of sentences in documents while rewarding the sentences which contribute more to capturing the writing style. Our experimental results, based on four benchmark datasets, reveal the benefits of encoding document information from all three stylistic levels when compared to the baseline methods in the literature.
This paper discusses two issues with multi-channel multi-radio Wireless Mesh Networks (WMN): gateway placement and gateway selection. To address these issues, a method will be proposed that places gateways at strategic locations to avoid congestion and adaptively learns to select a more efficient gateway for each wireless router by using learning automata. This method, called the N-queen Inspired Gateway Placement and Learning Automata-based Selection (NQ-GPLS), considers multiple metrics such as loss ratio, throughput, load at the gateways and delay. Simulation results from NS-2 simulator demonstrate that NQ-GPLS can significantly improve the overall network performance compared to a standard WMN.