Visible to the public Biblio

Filters: Author is Alamri, N.  [Clear All Filters]
2019-01-16
Alamri, N., Chow, C. E., Aljaedi, A., Elgzil, A..  2018.  UFAP: Ultra-fast handoff authentication protocol for wireless mesh networks. 2018 Wireless Days (WD). :1–8.
Wireless mesh networking (WMN) is a new technology aimed to introduce the benefits of using multi-hop and multi-path to the wireless world. However, the absence of a fast and reliable handoff protocol is a major drawback especially in a technology designed to feature high mobility and scalability. We propose a fast and efficient handoff authentication protocol for wireless mesh networks. It is a token-based authentication protocol using pre-distributed parameters. We provide a performance comparison among our protocol, UFAP, and other protocols including EAP-TLS and EAP-PEAP tested in an actual setup. Performance analysis will prove that our proposed handoff authentication protocol is 250 times faster than EAP-PEAP and 500 times faster than EAP-TLS. The significant improvement in performance allows UFAP to provide seamless handoff and continuous operation even for real-time applications which can only tolerate short delays under 50 ms.
2018-04-02
Elgzil, A., Chow, C. E., Aljaedi, A., Alamri, N..  2017.  Cyber Anonymity Based on Software-Defined Networking and Onion Routing (SOR). 2017 IEEE Conference on Dependable and Secure Computing. :358–365.

Cyber anonymity tools have attracted wide attention in resisting network traffic censorship and surveillance, and have played a crucial role for open communications over the Internet. The Onion Routing (Tor) is considered the prevailing technique for circumventing the traffic surveillance and providing cyber anonymity. Tor operates by tunneling a traffic through a series of relays, making such traffic to appear as if it originated from the last relay in the traffic path, rather than from the original user. However, Tor faced some obstructions in carrying out its goal effectively, such as insufficient performance and limited capacity. This paper presents a cyber anonymity technique based on software-defined networking; named SOR, which builds onion-routed tunnels across multiple anonymity service providers. SOR architecture enables any cloud tenants to participate in the anonymity service via software-defined networking. Our proposed architecture leverages the large capacity and robust connectivity of the commercial cloud networks to elevate the performance of the cyber anonymity service.