Visible to the public Biblio

Filters: Author is Jin, R.  [Clear All Filters]
2021-04-08
Jin, R., He, X., Dai, H..  2019.  On the Security-Privacy Tradeoff in Collaborative Security: A Quantitative Information Flow Game Perspective. IEEE Transactions on Information Forensics and Security. 14:3273–3286.
To contest the rapidly developing cyber-attacks, numerous collaborative security schemes, in which multiple security entities can exchange their observations and other relevant data to achieve more effective security decisions, are proposed and developed in the literature. However, the security-related information shared among the security entities may contain some sensitive information and such information exchange can raise privacy concerns, especially when these entities belong to different organizations. With such consideration, the interplay between the attacker and the collaborative entities is formulated as Quantitative Information Flow (QIF) games, in which the QIF theory is adapted to measure the collaboration gain and the privacy loss of the entities in the information sharing process. In particular, three games are considered, each corresponding to one possible scenario of interest in practice. Based on the game-theoretic analysis, the expected behaviors of both the attacker and the security entities are obtained. In addition, the simulation results are presented to validate the analysis.
2018-05-09
Jin, R., He, X., Dai, H., Dutta, R., Ning, P..  2017.  Towards Privacy-Aware Collaborative Security: A Game-Theoretic Approach. 2017 IEEE Symposium on Privacy-Aware Computing (PAC). :72–83.

With the rapid development of sophisticated attack techniques, individual security systems that base all of their decisions and actions of attack prevention and response on their own observations and knowledge become incompetent. To cope with this problem, collaborative security in which a set of security entities are coordinated to perform specific security actions is proposed in literature. In collaborative security schemes, multiple entities collaborate with each other by sharing threat evidence or analytics to make more effective decisions. Nevertheless, the anticipated information exchange raises privacy concerns, especially for those privacy-sensitive entities. In order to obtain a quantitative understanding of the fundamental tradeoff between the effectiveness of collaboration and the entities' privacy, a repeated two-layer single-leader multi-follower game is proposed in this work. Based on our game-theoretic analysis, the expected behaviors of both the attacker and the security entities are derived and the utility-privacy tradeoff curve is obtained. In addition, the existence of Nash equilibrium (NE) for the collaborative entities is proven, and an asynchronous dynamic update algorithm is proposed to compute the optimal collaboration strategies of the entities. Furthermore, the existence of Byzantine entities is considered and its influence is investigated. Finally, simulation results are presented to validate the analysis.

2018-04-02
He, X., Islam, M. M., Jin, R., Dai, H..  2017.  Foresighted Deception in Dynamic Security Games. 2017 IEEE International Conference on Communications (ICC). :1–6.

Deception has been widely considered in literature as an effective means of enhancing security protection when the defender holds some private information about the ongoing rivalry unknown to the attacker. However, most of the existing works on deception assume static environments and thus consider only myopic deception, while practical security games between the defender and the attacker may happen in dynamic scenarios. To better exploit the defender's private information in dynamic environments and improve security performance, a stochastic deception game (SDG) framework is developed in this work to enable the defender to conduct foresighted deception. To solve the proposed SDG, a new iterative algorithm that is provably convergent is developed. A corresponding learning algorithm is developed as well to facilitate the defender in conducting foresighted deception in unknown dynamic environments. Numerical results show that the proposed foresighted deception can offer a substantial performance improvement as compared to the conventional myopic deception.