Biblio
With the rapid development of sophisticated attack techniques, individual security systems that base all of their decisions and actions of attack prevention and response on their own observations and knowledge become incompetent. To cope with this problem, collaborative security in which a set of security entities are coordinated to perform specific security actions is proposed in literature. In collaborative security schemes, multiple entities collaborate with each other by sharing threat evidence or analytics to make more effective decisions. Nevertheless, the anticipated information exchange raises privacy concerns, especially for those privacy-sensitive entities. In order to obtain a quantitative understanding of the fundamental tradeoff between the effectiveness of collaboration and the entities' privacy, a repeated two-layer single-leader multi-follower game is proposed in this work. Based on our game-theoretic analysis, the expected behaviors of both the attacker and the security entities are derived and the utility-privacy tradeoff curve is obtained. In addition, the existence of Nash equilibrium (NE) for the collaborative entities is proven, and an asynchronous dynamic update algorithm is proposed to compute the optimal collaboration strategies of the entities. Furthermore, the existence of Byzantine entities is considered and its influence is investigated. Finally, simulation results are presented to validate the analysis.
Deception has been widely considered in literature as an effective means of enhancing security protection when the defender holds some private information about the ongoing rivalry unknown to the attacker. However, most of the existing works on deception assume static environments and thus consider only myopic deception, while practical security games between the defender and the attacker may happen in dynamic scenarios. To better exploit the defender's private information in dynamic environments and improve security performance, a stochastic deception game (SDG) framework is developed in this work to enable the defender to conduct foresighted deception. To solve the proposed SDG, a new iterative algorithm that is provably convergent is developed. A corresponding learning algorithm is developed as well to facilitate the defender in conducting foresighted deception in unknown dynamic environments. Numerical results show that the proposed foresighted deception can offer a substantial performance improvement as compared to the conventional myopic deception.