Visible to the public Biblio

Filters: Author is Odesile, A.  [Clear All Filters]
2018-04-02
Odesile, A., Thamilarasu, G..  2017.  Distributed Intrusion Detection Using Mobile Agents in Wireless Body Area Networks. 2017 Seventh International Conference on Emerging Security Technologies (EST). :144–149.

Technological advances in wearable and implanted medical devices are enabling wireless body area networks to alter the current landscape of medical and healthcare applications. These systems have the potential to significantly improve real time patient monitoring, provide accurate diagnosis and deliver faster treatment. In spite of their growth, securing the sensitive medical and patient data relayed in these networks to protect patients' privacy and safety still remains an open challenge. The resource constraints of wireless medical sensors limit the adoption of traditional security measures in this domain. In this work, we propose a distributed mobile agent based intrusion detection system to secure these networks. Specifically, our autonomous mobile agents use machine learning algorithms to perform local and network level anomaly detection to detect various security attacks targeted on healthcare systems. Simulation results show that our system performs efficiently with high detection accuracy and low energy consumption.