Biblio
In video surveillance, face recognition (FR) systems seek to detect individuals of interest appearing over a distributed network of cameras. Still-to-video FR systems match faces captured in videos under challenging conditions against facial models, often designed using one reference still per individual. Although CNNs can achieve among the highest levels of accuracy in many real-world FR applications, state-of-the-art CNNs that are suitable for still-to-video FR, like trunk-branch ensemble (TBE) CNNs, represent complex solutions for real-time applications. In this paper, an efficient CNN architecture is proposed for accurate still-to-video FR from a single reference still. The CCM-CNN is based on new cross-correlation matching (CCM) and triplet-loss optimization methods that provide discriminant face representations. The matching pipeline exploits a matrix Hadamard product followed by a fully connected layer inspired by adaptive weighted cross-correlation. A triplet-based training approach is proposed to optimize the CCM-CNN parameters such that the inter-class variations are increased, while enhancing robustness to intra-class variations. To further improve robustness, the network is fine-tuned using synthetically-generated faces based on still and videos of non-target individuals. Experiments on videos from the COX Face and Chokepoint datasets indicate that the CCM-CNN can achieve a high level of accuracy that is comparable to TBE-CNN and HaarNet, but with a significantly lower time and memory complexity. It may therefore represent the better trade-off between accuracy and complexity for real-time video surveillance applications.
Detecting faces and heads appearing in video feeds are challenging tasks in real-world video surveillance applications due to variations in appearance, occlusions and complex backgrounds. Recently, several CNN architectures have been proposed to increase the accuracy of detectors, although their computational complexity can be an issue, especially for realtime applications, where faces and heads must be detected live using high-resolution cameras. This paper compares the accuracy and complexity of state-of-the-art CNN architectures that are suitable for face and head detection. Single pass and region-based architectures are reviewed and compared empirically to baseline techniques according to accuracy and to time and memory complexity on images from several challenging datasets. The viability of these architectures is analyzed with real-time video surveillance applications in mind. Results suggest that, although CNN architectures can achieve a very high level of accuracy compared to traditional detectors, their computational cost can represent a limitation for many practical real-time applications.