Visible to the public Biblio

Filters: Author is Eriksson, J.  [Clear All Filters]
2018-04-04
Jin, Y., Eriksson, J..  2017.  Fully Automatic, Real-Time Vehicle Tracking for Surveillance Video. 2017 14th Conference on Computer and Robot Vision (CRV). :147–154.

We present an object tracking framework which fuses multiple unstable video-based methods and supports automatic tracker initialization and termination. To evaluate our system, we collected a large dataset of hand-annotated 5-minute traffic surveillance videos, which we are releasing to the community. To the best of our knowledge, this is the first publicly available dataset of such long videos, providing a diverse range of real-world object variation, scale change, interaction, different resolutions and illumination conditions. In our comprehensive evaluation using this dataset, we show that our automatic object tracking system often outperforms state-of-the-art trackers, even when these are provided with proper manual initialization. We also demonstrate tracking throughput improvements of 5× or more vs. the competition.