Visible to the public Biblio

Filters: Author is Spanos, Georgios  [Clear All Filters]
2022-04-18
Aivatoglou, Georgios, Anastasiadis, Mike, Spanos, Georgios, Voulgaridis, Antonis, Votis, Konstantinos, Tzovaras, Dimitrios.  2021.  A Tree-Based Machine Learning Methodology to Automatically Classify Software Vulnerabilities. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :312–317.
Software vulnerabilities have become a major problem for the security analysts, since the number of new vulnerabilities is constantly growing. Thus, there was a need for a categorization system, in order to group and handle these vulnerabilities in a more efficient way. Hence, the MITRE corporation introduced the Common Weakness Enumeration that is a list of the most common software and hardware vulnerabilities. However, the manual task of understanding and analyzing new vulnerabilities by security experts, is a very slow and exhausting process. For this reason, a new automated classification methodology is introduced in this paper, based on the vulnerability textual descriptions from National Vulnerability Database. The proposed methodology, combines textual analysis and tree-based machine learning techniques in order to classify vulnerabilities automatically. The results of the experiments showed that the proposed methodology performed pretty well achieving an overall accuracy close to 80%.
2018-04-11
Spanos, Georgios, Angelis, Lefteris, Toloudis, Dimitrios.  2017.  Assessment of Vulnerability Severity Using Text Mining. Proceedings of the 21st Pan-Hellenic Conference on Informatics. :49:1–49:6.

Software1 vulnerabilities are closely associated with information systems security, a major and critical field in today's technology. Vulnerabilities constitute a constant and increasing threat for various aspects of everyday life, especially for safety and economy, since the social impact from the problems that they cause is complicated and often unpredictable. Although there is an entire research branch in software engineering that deals with the identification and elimination of vulnerabilities, the growing complexity of software products and the variability of software production procedures are factors contributing to the ongoing occurrence of vulnerabilities, Hence, another area that is being developed in parallel focuses on the study and management of the vulnerabilities that have already been reported and registered in databases. The information contained in such databases includes, a textual description and a number of metrics related to vulnerabilities. The purpose of this paper is to investigate to what extend the assessment of the vulnerability severity can be inferred directly from the corresponding textual description, or in other words, to examine the informative power of the description with respect to the vulnerability severity. For this purpose, text mining techniques, i.e. text analysis and three different classification methods (decision trees, neural networks and support vector machines) were employed. The application of text mining to a sample of 70,678 vulnerabilities from a public data source shows that the description itself is a reliable and highly accurate source of information for vulnerability prioritization.