Visible to the public Biblio

Filters: Author is Liu, Rui  [Clear All Filters]
2022-06-09
Luo, Ruijiao, Huang, Chao, Peng, Yuntao, Song, Boyi, Liu, Rui.  2021.  Repairing Human Trust by Promptly Correcting Robot Mistakes with An Attention Transfer Model. 2021 IEEE 17th International Conference on Automation Science and Engineering (CASE). :1928–1933.

In human-robot collaboration (HRC), human trust in the robot is the human expectation that a robot executes tasks with desired performance. A higher-level trust increases the willingness of a human operator to assign tasks, share plans, and reduce the interruption during robot executions, thereby facilitating human-robot integration both physically and mentally. However, due to real-world disturbances, robots inevitably make mistakes, decreasing human trust and further influencing collaboration. Trust is fragile and trust loss is triggered easily when robots show incapability of task executions, making the trust maintenance challenging. To maintain human trust, in this research, a trust repair framework is developed based on a human-to-robot attention transfer (H2R-AT) model and a user trust study. The rationale of this framework is that a prompt mistake correction restores human trust. With H2R-AT, a robot localizes human verbal concerns and makes prompt mistake corrections to avoid task failures in an early stage and to finally improve human trust. User trust study measures trust status before and after the behavior corrections to quantify the trust loss. Robot experiments were designed to cover four typical mistakes, wrong action, wrong region, wrong pose, and wrong spatial relation, validated the accuracy of H2R-AT in robot behavior corrections; a user trust study with 252 participants was conducted, and the changes in trust levels before and after corrections were evaluated. The effectiveness of the human trust repairing was evaluated by the mistake correction accuracy and the trust improvement.

Pang, Yijiang, Huang, Chao, Liu, Rui.  2021.  Synthesized Trust Learning from Limited Human Feedback for Human-Load-Reduced Multi-Robot Deployments. 2021 30th IEEE International Conference on Robot Human Interactive Communication (RO-MAN). :778–783.
Human multi-robot system (MRS) collaboration is demonstrating potentials in wide application scenarios due to the integration of human cognitive skills and a robot team’s powerful capability introduced by its multi-member structure. However, due to limited human cognitive capability, a human cannot simultaneously monitor multiple robots and identify the abnormal ones, largely limiting the efficiency of the human-MRS collaboration. There is an urgent need to proactively reduce unnecessary human engagements and further reduce human cognitive loads. Human trust in human MRS collaboration reveals human expectations on robot performance. Based on trust estimation, the work between a human and MRS will be reallocated that an MRS will self-monitor and only request human guidance in critical situations. Inspired by that, a novel Synthesized Trust Learning (STL) method was developed to model human trust in the collaboration. STL explores two aspects of human trust (trust level and trust preference), meanwhile accelerates the convergence speed by integrating active learning to reduce human workload. To validate the effectiveness of the method, tasks "searching victims in the context of city rescue" were designed in an open-world simulation environment, and a user study with 10 volunteers was conducted to generate real human trust feedback. The results showed that by maximally utilizing human feedback, the STL achieved higher accuracy in trust modeling with a few human feedback, effectively reducing human interventions needed for modeling an accurate trust, therefore reducing human cognitive load in the collaboration.
2022-02-03
Pang, Yijiang, Liu, Rui.  2021.  Trust-Aware Emergency Response for A Resilient Human-Swarm Cooperative System. 2021 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). :15—20.

A human-swarm cooperative system, which mixes multiple robots and a human supervisor to form a mission team, has been widely used for emergent scenarios such as criminal tracking and victim assistance. These scenarios are related to human safety and require a robot team to quickly transit from the current undergoing task into the new emergent task. This sudden mission change brings difficulty in robot motion adjustment and increases the risk of performance degradation of the swarm. Trust in human-human collaboration reflects a general expectation of the collaboration; based on the trust humans mutually adjust their behaviors for better teamwork. Inspired by this, in this research, a trust-aware reflective control (Trust-R), was developed for a robot swarm to understand the collaborative mission and calibrate its motions accordingly for better emergency response. Typical emergent tasks “transit between area inspection tasks”, “response to emergent target - car accident” in social security with eight fault-related situations were designed to simulate robot deployments. A human user study with 50 volunteers was conducted to model trust and assess swarm performance. Trust-R's effectiveness in supporting a robot team for emergency response was validated by improved task performance and increased trust scores.

Huang, Chao, Luo, Wenhao, Liu, Rui.  2021.  Meta Preference Learning for Fast User Adaptation in Human-Supervisory Multi-Robot Deployments. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). :5851—5856.
As multi-robot systems (MRS) are widely used in various tasks such as natural disaster response and social security, people enthusiastically expect an MRS to be ubiquitous that a general user without heavy training can easily operate. However, humans have various preferences on balancing between task performance and safety, imposing different requirements onto MRS control. Failing to comply with preferences makes people feel difficult in operation and decreases human willingness of using an MRS. Therefore, to improve social acceptance as well as performance, there is an urgent need to adjust MRS behaviors according to human preferences before triggering human corrections, which increases cognitive load. In this paper, a novel Meta Preference Learning (MPL) method was developed to enable an MRS to fast adapt to user preferences. MPL based on meta learning mechanism can quickly assess human preferences from limited instructions; then, a neural network based preference model adjusts MRS behaviors for preference adaption. To validate method effectiveness, a task scenario "An MRS searches victims in an earthquake disaster site" was designed; 20 human users were involved to identify preferences as "aggressive", "medium", "reserved"; based on user guidance and domain knowledge, about 20,000 preferences were simulated to cover different operations related to "task quality", "task progress", "robot safety". The effectiveness of MPL in preference adaption was validated by the reduced duration and frequency of human interventions.
2021-09-16
Yang, Xiaodong, Liu, Rui, Chen, Guilan, Wang, Meiding, Wang, Caifen.  2020.  Security Analysis of a Certificateless Signcryption Mechanism without Bilinear Mapping. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). 1:2431–2434.
Certificateless signcryption mechanism can not only provide security services, such as message integrity, non-repudiation and confidentiality, but also solve the problems of public key certificate management and key escrow. Zhou et al. proposed a certificateless signcryption mechanism without bilinear mapping and gave its security proof under the discrete logarithm problem and the computational Diffie Hellman problem in the random oracle model. However, the analysis show that this scheme has security flaws. That is, attackers can forge legitimate signatures of any messages. Finally, we give the specific attack process.
2020-08-03
Yang, Xiaodong, Liu, Rui, Wang, Meiding, Chen, Guilan.  2019.  Identity-Based Aggregate Signature Scheme in Vehicle Ad-hoc Network. 2019 4th International Conference on Mechanical, Control and Computer Engineering (ICMCCE). :1046–10463.

Vehicle ad-hoc network (VANET) is the main driving force to alleviate traffic congestion and accelerate the construction of intelligent transportation. However, the rapid growth of the number of vehicles makes the construction of the safety system of the vehicle network facing multiple tests. This paper proposes an identity-based aggregate signature scheme to protect the privacy of vehicle identity, receive messages in time and authenticate quickly in VANET. The scheme uses aggregate signature algorithm to aggregate the signatures of multiple users into one signature, and joins the idea of batch authentication to complete the authentication of multiple vehicular units, thereby improving the verification efficiency. In addition, the pseudoidentity of vehicles is used to achieve the purpose of vehicle anonymity and privacy protection. Finally, the secure storage of message signatures is effectively realized by using reliable cloud storage technology. Compared with similar schemes, this paper improves authentication efficiency while ensuring security, and has lower storage overhead.

2018-04-11
Liu, Rui, Rawassizadeh, Reza, Kotz, David.  2017.  Toward Accurate and Efficient Feature Selection for Speaker Recognition on Wearables. Proceedings of the 2017 Workshop on Wearable Systems and Applications. :41–46.

Due to the user-interface limitations of wearable devices, voice-based interfaces are becoming more common; speaker recognition may then address the authentication requirements of wearable applications. Wearable devices have small form factor, limited energy budget and limited computational capacity. In this paper, we examine the challenge of computing speaker recognition on small wearable platforms, and specifically, reducing resource use (energy use, response time) by trimming the input through careful feature selections. For our experiments, we analyze four different feature-selection algorithms and three different feature sets for speaker identification and speaker verification. Our results show that Principal Component Analysis (PCA) with frequency-domain features had the highest accuracy, Pearson Correlation (PC) with time-domain features had the lowest energy use, and recursive feature elimination (RFE) with frequency-domain features had the least latency. Our results can guide developers to choose feature sets and configurations for speaker-authentication algorithms on wearable platforms.