Visible to the public Biblio

Filters: Author is Orailoglo, A.  [Clear All Filters]
2018-04-11
Hossain, F. S., Yoneda, T., Shintani, M., Inoue, M., Orailoglo, A..  2017.  Intra-Die-Variation-Aware Side Channel Analysis for Hardware Trojan Detection. 2017 IEEE 26th Asian Test Symposium (ATS). :52–57.

High detection sensitivity in the presence of process variation is a key challenge for hardware Trojan detection through side channel analysis. In this work, we present an efficient Trojan detection approach in the presence of elevated process variations. The detection sensitivity is sharpened by 1) comparing power levels from neighboring regions within the same chip so that the two measured values exhibit a common trend in terms of process variation, and 2) generating test patterns that toggle each cell multiple times to increase Trojan activation probability. Detection sensitivity is analyzed and its effectiveness demonstrated by means of RPD (relative power difference). We evaluate our approach on ISCAS'89 and ITC'99 benchmarks and the AES-128 circuit for both combinational and sequential type Trojans. High detection sensitivity is demonstrated by analysis on RPD under a variety of process variation levels and experiments for Trojan inserted circuits.