Visible to the public Biblio

Filters: Author is Xie, T.  [Clear All Filters]
2021-02-22
Lei, X., Tu, G.-H., Liu, A. X., Xie, T..  2020.  Fast and Secure kNN Query Processing in Cloud Computing. 2020 IEEE Conference on Communications and Network Security (CNS). :1–9.
Advances in sensing and tracking technology lead to the proliferation of location-based services. Location service providers (LSPs) often resort to commercial public clouds to store the tremendous geospatial data and process location-based queries from data users. To protect the privacy of LSP's geospatial data and data user's query location against the untrusted cloud, they are required to be encrypted before sending to the cloud. Nevertheless, it is not easy to design a fast and secure location-based query processing scheme over the encrypted data. In this paper, we propose a Fast and Secure kNN (FSkNN) scheme to support secure k nearest neighbor (k NN) search in cloud computing. We reveal the inherent connection between an Sk NN protocol and a secure range query protocol and further describe how to construct FSkNN based on a secure range query protocol. FSkNN leverages a customized accuracy-assured strategy to ensure the result accuracy and adopts a data structure named random Bloom filter (RBF) to build a secure index for efficiently searching. We formally prove the security of FSkNN under the random oracle model. Our evaluation results show that FSkNN is highly practical.
2018-05-01
Xie, T., Zhou, Q., Hu, J., Shu, L., Jiang, P..  2017.  A Sequential Multi-Objective Robust Optimization Approach under Interval Uncertainty Based on Support Vector Machines. 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). :2088–2092.

Interval uncertainty can cause uncontrollable variations in the objective and constraint values, which could seriously deteriorate the performance or even change the feasibility of the optimal solutions. Robust optimization is to obtain solutions that are optimal and minimally sensitive to uncertainty. In this paper, a sequential multi-objective robust optimization (MORO) approach based on support vector machines (SVM) is proposed. Firstly, a sequential optimization structure is adopted to ease the computational burden. Secondly, SVM is used to construct a classification model to classify design alternatives into feasible or infeasible. The proposed approach is tested on a numerical example and an engineering case. Results illustrate that the proposed approach can reasonably approximate solutions obtained from the existing sequential MORO approach (SMORO), while the computational costs are significantly reduced compared with those of SMORO.