Visible to the public Biblio

Filters: Author is Cheng, Y.  [Clear All Filters]
2021-04-08
Walia, K. S., Shenoy, S., Cheng, Y..  2020.  An Empirical Analysis on the Usability and Security of Passwords. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :1–8.
Security and usability are two essential aspects of a system, but they usually move in opposite directions. Sometimes, to achieve security, usability has to be compromised, and vice versa. Password-based authentication systems require both security and usability. However, to increase password security, absurd rules are introduced, which often drive users to compromise the usability of their passwords. Users tend to forget complex passwords and use techniques such as writing them down, reusing them, and storing them in vulnerable ways. Enhancing the strength while maintaining the usability of a password has become one of the biggest challenges for users and security experts. In this paper, we define the pronounceability of a password as a means to measure how easy it is to memorize - an aspect we associate with usability. We examine a dataset of more than 7 million passwords to determine whether the usergenerated passwords are secure. Moreover, we convert the usergenerated passwords into phonemes and measure the pronounceability of the phoneme-based representations. We then establish a relationship between the two and suggest how password creation strategies can be adapted to better align with both security and usability.
2021-02-15
Liang, Y., Bai, L., Shao, J., Cheng, Y..  2020.  Application of Tensor Decomposition Methods In Eddy Current Pulsed Thermography Sequences Processing. 2020 International Conference on Sensing, Measurement Data Analytics in the era of Artificial Intelligence (ICSMD). :401–406.
Eddy Current Pulsed Thermography (ECPT) is widely used in Nondestructive Testing (NDT) of metal defects where the defect information is sometimes affected by coil noise and edge noise, therefore, it is necessary to segment the ECPT image sequences to improve the detection effect, that is, segmenting the defect part from the background. At present, the methods widely used in ECPT are mostly based on matrix decomposition theory. In fact, tensor decomposition is a new hotspot in the field of image segmentation and has been widely used in many image segmentation scenes, but it is not a general method in ECPT. This paper analyzes the feasibility of the usage of tensor decomposition in ECPT and designs several experiments on different samples to verify the effects of two popular tensor decomposition algorithms in ECPT. This paper also compares the matrix decomposition methods and the tensor decomposition methods in terms of treatment effect, time cost, detection success rate, etc. Through the experimental results, this paper points out the advantages and disadvantages of tensor decomposition methods in ECPT and analyzes the suitable engineering application scenarios of tensor decomposition in ECPT.
2018-05-02
Jian, R., Chen, Y., Cheng, Y., Zhao, Y..  2017.  Millimeter Wave Microstrip Antenna Design Based on Swarm Intelligence Algorithm in 5G. 2017 IEEE Globecom Workshops (GC Wkshps). :1–6.

In order to solve the problem of millimeter wave (mm-wave) antenna impedance mismatch in 5G communication system, a optimization algorithm for Particle Swarm Ant Colony Optimization (PSACO) is proposed to optimize antenna patch parameter. It is proved that the proposed method can effectively achieve impedance matching in 28GHz center frequency, and the return loss characteristic is obviously improved. At the same time, the nonlinear regression model is used to solve the nonlinear relationship between the resonant frequency and the patch parameters. The Elman Neural Network (Elman NN) model is used to verify the reliability of PSACO and nonlinear regression model. Patch parameters optimized by PSACO were introduced into the nonlinear relationship, which obtained error within 2%. The method proposed in this paper improved efficiency in antenna design.