Visible to the public Biblio

Filters: Author is Jiang, M.  [Clear All Filters]
2021-01-20
Jiang, M., Lundgren, J., Pasha, S., Carratù, M., Liguori, C., Thungström, G..  2020.  Indoor Silent Object Localization using Ambient Acoustic Noise Fingerprinting. 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). :1—6.

Indoor localization has been a popular research subject in recent years. Usually, object localization using sound involves devices on the objects, acquiring data from stationary sound sources, or by localizing the objects with external sensors when the object generates sounds. Indoor localization systems using microphones have traditionally also used systems with several microphones, setting the limitations on cost efficiency and required space for the systems. In this paper, the goal is to investigate whether it is possible for a stationary system to localize a silent object in a room, with only one microphone and ambient noise as information carrier. A subtraction method has been combined with a fingerprint technique, to define and distinguish the noise absorption characteristic of the silent object in the frequency domain for different object positions. The absorption characteristics of several positions of the object is taken as comparison references, serving as fingerprints of known positions for an object. With the experiment result, the tentative idea has been verified as feasible, and noise signal based lateral localization of silent objects can be achieved.

2020-12-11
Fujiwara, N., Shimasaki, K., Jiang, M., Takaki, T., Ishii, I..  2019.  A Real-time Drone Surveillance System Using Pixel-level Short-time Fourier Transform. 2019 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). :303—308.

In this study we propose a novel method for drone surveillance that can simultaneously analyze time-frequency responses in all pixels of a high-frame-rate video. The propellers of flying drones rotate at hundreds of Hz and their principal vibration frequency components are much higher than those of their background objects. To separate the pixels around a drone's propellers from its background, we utilize these time-series features for vibration source localization with pixel-level short-time Fourier transform (STFT). We verify the relationship between the number of taps in the STFT computation and the performance of our algorithm, including the execution time and the localization accuracy, by conducting experiments under various conditions, such as degraded appearance, weather, and defocused blur. The robustness of the proposed algorithm is also verified by localizing a flying multi-copter in real-time in an outdoor scenario.

2018-05-02
Li, F., Jiang, M., Zhang, Z..  2017.  An adaptive sparse representation model by block dictionary and swarm intelligence. 2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA). :200–203.

The pattern recognition in the sparse representation (SR) framework has been very successful. In this model, the test sample can be represented as a sparse linear combination of training samples by solving a norm-regularized least squares problem. However, the value of regularization parameter is always indiscriminating for the whole dictionary. To enhance the group concentration of the coefficients and also to improve the sparsity, we propose a new SR model called adaptive sparse representation classifier(ASRC). In ASRC, a sparse coefficient strengthened item is added in the objective function. The model is solved by the artificial bee colony (ABC) algorithm with variable step to speed up the convergence. Also, a partition strategy for large scale dictionary is adopted to lighten bee's load and removes the irrelevant groups. Through different data sets, we empirically demonstrate the property of the new model and its recognition performance.