Biblio
The modern world is becoming increasingly dependent on computing and communication technology to function, but unfortunately its application and impact on areas such as critical infrastructure and industrial control system (ICS) networks remains to be thoroughly studied. Significant research has been conducted to address the myriad security concerns in these areas, but they are virtually all based on artificial testbeds or simulations designed on assumptions about their behavior either from knowledge of traditional IT networking or from basic principles of ICS operation. In this work, we provide the most detailed characterization of an example ICS to date in order to determine if these common assumptions hold true. A live power distribution substation is observed over the course of two and a half years to measure its behavior and evolution over time. Then, a horizontal study is conducted that compared this behavior with three other substations from the same company. Although most predictions were found to be correct, some unexpected behavior was observed that highlights the fundamental differences between ICS and IT networks including round trip times dominated by processing speed as opposed to network delay, several well known TCP features being largely irrelevant, and surprisingly large jitter from devices running real-time operating systems. The impact of these observations is discussed in terms of generality to other embedded networks, network security applications, and the suitability of the TCP protocol for this environment.