Visible to the public Biblio

Filters: Author is Hasan, M. M.  [Clear All Filters]
2021-01-28
Esmeel, T. K., Hasan, M. M., Kabir, M. N., Firdaus, A..  2020.  Balancing Data Utility versus Information Loss in Data-Privacy Protection using k-Anonymity. 2020 IEEE 8th Conference on Systems, Process and Control (ICSPC). :158—161.

Data privacy has been an important area of research in recent years. Dataset often consists of sensitive data fields, exposure of which may jeopardize interests of individuals associated with the data. In order to resolve this issue, privacy techniques can be used to hinder the identification of a person through anonymization of the sensitive data in the dataset to protect sensitive information, while the anonymized dataset can be used by the third parties for analysis purposes without obstruction. In this research, we investigated a privacy technique, k-anonymity for different values of on different number columns of the dataset. Next, the information loss due to k-anonymity is computed. The anonymized files go through the classification process by some machine-learning algorithms i.e., Naive Bayes, J48 and neural network in order to check a balance between data anonymity and data utility. Based on the classification accuracy, the optimal values of and are obtained, and thus, the optimal and can be used for k-anonymity algorithm to anonymize optimal number of columns of the dataset.

2018-05-09
Hasan, M. M., Rahman, M. M..  2017.  RansHunt: A Support Vector Machines Based Ransomware Analysis Framework with Integrated Feature Set. 2017 20th International Conference of Computer and Information Technology (ICCIT). :1–7.

Ransomware is one of the most increasing malwares used by cyber-criminals in recent days. This type of malware uses cryptographic technology that encrypts a user's important files, folders makes the computer systems unusable, holds the decryption key and asks for the ransom from the victims for recovery. The recent ransomware families are very sophisticated and difficult to analyze & detect using static features only. On the other hand, latest crypto-ransomwares having sandboxing and IDS evading capabilities. So obviously, static or dynamic analysis of the ransomware alone cannot provide better solution. In this paper, we will present a Machine Learning based approach which will use integrated method, a combination of static and dynamic analysis to detect ransomware. The experimental test samples were taken from almost all ransomware families including the most recent ``WannaCry''. The results also suggest that combined analysis can detect ransomware with better accuracy compared to individual analysis approach. Since ransomware samples show some ``run-time'' and ``static code'' features, it also helps for the early detection of new and similar ransomware variants.