Visible to the public Biblio

Filters: Author is Shin, S.  [Clear All Filters]
2020-11-04
Shin, S., Seto, Y., Kasai, Y., Ka, R., Kuroki, D., Toyoda, S., Hasegawa, K., Midorikawa, K..  2019.  Development of Training System and Practice Contents for Cybersecurity Education. 2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI). :172—177.

In this paper, we propose a cybersecurity exercise system in a virtual computer environment. The human resource development for security fields is an urgent issue because of the threat of cyber-attacks, recently, is increasing, many incidents occurring, but there is a not enough security personnel to respond. Some universities and companies are conducting education using a commercial training system on the market. However, built and operates the training system is expensive, therefore difficult to use in higher education institutions and SMEs. However, to build and operates, the training system needs high cost, thus difficult to use in higher education institutions and SMEs. For this reason, we developed the CyExec: a cybersecurity exercise system consisting of a virtual computer environment using VirtualBox and Docker. We also implemented the WebGoat that is an OSS vulnerability diagnosis and learning program on the CyExec and developed an attack and defense exercise program.

2019-05-09
Hata, K., Sasaki, T., Mochizuki, A., Sawada, K., Shin, S., Hosokawa, S..  2018.  Collaborative Model-Based Fallback Control for Secured Networked Control Systems. IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society. :5963-5970.

The authors have proposed the Fallback Control System (FCS) as a countermeasure after cyber-attacks happen in Industrial Control Systems (ICSs). For increased robustness against cyber-attacks, introducing multiple countermeasures is desirable. Then, an appropriate collaboration is essential. This paper introduces two FCSs in ICS: field network signal is driven FCS and analog signal driven FCS. This paper also implements a collaborative FCS by a collaboration function of the two FCSs. The collaboration function is that the analog signal driven FCS estimates the state of the other FCS. The collaborative FCS decides the countermeasure based on the result of the estimation after cyber-attacks happen. Finally, we show practical experiment results to analyze the effectiveness of the proposed method.

2018-05-09
Shin, S., Tuck, J., Solihin, Y..  2017.  Hiding the Long Latency of Persist Barriers Using Speculative Execution. 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA). :175–186.

Byte-addressable non-volatile memory technology is emerging as an alternative for DRAM for main memory. This new Non-Volatile Main Memory (NVMM) allows programmers to store important data in data structures in memory instead of serializing it to the file system, thereby providing a substantial performance boost. However, modern systems reorder memory operations and utilize volatile caches for better performance, making it difficult to ensure a consistent state in NVMM. Intel recently announced a new set of persistence instructions, clflushopt, clwb, and pcommit. These new instructions make it possible to implement fail-safe code on NVMM, but few workloads have been written or characterized using these new instructions. In this work, we describe how these instructions work and how they can be used to implement write-ahead logging based transactions. We implement several common data structures and kernels and evaluate the performance overhead incurred over traditional non-persistent implementations. In particular, we find that persistence instructions occur in clusters along with expensive fence operations, they have long latency, and they add a significant execution time overhead, on average by 20.3% over code with logging but without fence instructions to order persists. To deal with this overhead and alleviate the performance bottleneck, we propose to speculate past long latency persistency operations using checkpoint-based processing. Our speculative persistence architecture reduces the execution time overheads to only 3.6%.